首页> 外文期刊>Network and Service Management, IEEE Transactions on >Social Connections in User-Generated Content Video Systems: Analysis and Recommendation
【24h】

Social Connections in User-Generated Content Video Systems: Analysis and Recommendation

机译:用户生成的内容视频系统中的社交关系:分析和建议

获取原文
获取原文并翻译 | 示例

摘要

User-generated content (UGC) video systems by definition heavily depend on the input of their community of users and their social interactions for video diffusion and opinion sharing. Nevertheless, we show in this paper, through measurement and analysis of YouKu, the most popular UGC video system in China, that the social connectivity of its users is very low. These observations are consistent with what was reported about YouTube in previous works. As a UGC system can achieve a larger audience through improved connectivity, our findings motivate us to propose a mean to enhance the users' connectivity by taking benefit of friend recommendation. To this end, we assess two similarity metrics based on users' interests that are derived from their uploads and favorites tagging of videos, to evaluate the interest similarity between friends. The results consistently show that friends share to a great extent common interests. Two friend recommendation algorithms are then proposed. The algorithms use public information provided by users to suggest potential friends with similar interests as measured by the similarity metrics. Experiments on our gathered YouKu dataset demonstrate that the social connectivity can be greatly enhanced by our friend proposition set and that users can access a larger set of interesting videos through the recommendations.
机译:从定义上讲,用户生成的内容(UGC)视频系统在很大程度上取决于其用户社区的输入以及他们在视频传播和观点共享方面的社交互动。尽管如此,通过对中国最受欢迎的UGC视频系统YouKu的测量和分析,我们在本文中显示其用户的社交性非常低。这些观察结果与先前作品中有关YouTube的报道一致。由于UGC系统可以通过改善连接性来吸引更多的听众,因此我们的发现促使我们提出一种通过利用朋友推荐来增强用户连接性的方法。为此,我们根据用户的兴趣(从用户的上传和视频的收藏夹标签中得出)来评估两个相似度指标,以评估朋友之间的兴趣相似度。结果一致表明,朋友在很大程度上共享共同的兴趣。然后提出了两种朋友推荐算法。该算法使用用户提供的公共信息来建议具有相似兴趣的潜在朋友(通过相似性指标衡量)。对我们收集的YouKu数据集进行的实验表明,通过我们的朋友提议集可以大大增强社交联系,并且用户可以通过建议访问更多有趣的视频集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号