首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Stabilized Mixed Finite-Element Time-Domain Method for Fast Transient Analysis of Multiscale Electromagnetic Problems
【24h】

Stabilized Mixed Finite-Element Time-Domain Method for Fast Transient Analysis of Multiscale Electromagnetic Problems

机译:快速稳定分析多尺度电磁问题的稳定混合有限元时域方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the mixed E-B finite-element time-domain (FETD) method that is stabilized for an arbitrary time step size. Since the existing mixed FETD (M-FETD) method is based on a fully explicit leapfrog time marching procedure, it has a numerical stability condition: if not satisfied, the instability arises. The condition gives the upper limit of the time step size, and it becomes much strict if there exist small meshes in a computational domain. As a result, the smaller the time step size is, the higher the computational cost becomes. In this paper, we propose the stabilized M-FETD method through developing the stabilization process after specifying the root cause of the instability of the existing method. By virtue of the stabilization process, we can derive the fully explicit updating process which is efficient and numerically stable for the arbitrary time step size without degrading the accuracy. Numerical results of example problems demonstrate that our approach is superior to the existing one, especially in a multiscale electromagnetic problem in two and three dimensions.
机译:本文介绍了一种可在任意时间步长范围内稳定的混合E-B有限元时域(FETD)方法。由于现有的混合FETD(M-FETD)方法是基于完全明确的越级时间步长过程,因此具有数值稳定性条件:如果不满足,则会出现不稳定性。该条件给出了时间步长的上限,并且如果在计算域中存在小网格,它将变得更加严格。结果,时间步长越小,计算成本变得越高。在确定了现有方法不稳定的根本原因之后,本文通过开发稳定化过程提出了稳定化的M-FETD方法。通过稳定化过程,我们可以得出完全明确的更新过程,该过程对于任意时间步长大小均有效且在数值上稳定,而不会降低准确性。实例问题的数值结果表明,我们的方法优于现有方法,特别是在二维和三维多尺度电磁问题中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号