...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >A parallel finite-element time-domain method for transient electromagnetic simulation
【24h】

A parallel finite-element time-domain method for transient electromagnetic simulation

机译:瞬态电磁仿真的并行有限元时域方法

获取原文
获取原文并翻译 | 示例
           

摘要

The finite-difference time-domain (FDTD) method has been widely used to perform transient electromagnetic simulation. Compared to the traditional FDTD method, the finite-element time-domain (FETD) method with unstructured meshes and an adaptive time-stepping scheme has the potential to dramatically cut down the number of unknowns and the number of time steps. However, with a need to solve a large-scale unstructured sparse matrix at every time step, the FETD method is generally difficult to scale with the available parallel computing resources. To make efficient use of the multicore resources in current computing platforms, we designed a parallel FETD method that used multiple threads to accelerate the key steps for solving a large sparse matrix, including the construction of the preconditioner and matrix-vector multiplication. Using a customized incomplete Cholesky preconditioner, we achieved faster convergence than many existing preconditioners and a scalable parallel performance over multiple cores. To further reduce the total calculation time, we implemented an overlapping scheme and a preconditioner-reusing scheme. The overlapping scheme executed the solver computation and the preconditioner computation concurrently using different parts of the parallel resources. The preconditioner reusing scheme reduced the need to recompute preconditioners when increasing the time-step size, thus reducing the frequency of the less scalable preconditioner computations. It brought performance benefits by reducing the frequency of less scalable preconditioner computation. Computed parallel FETD results showed the same level of accuracy as FDTD results. In terms of parallel performance, using eight cores, the method cut execution time by a factor of 4 (i.e., 50 parallel efficiency). For a realistic salt model, we simulated TEM responses from 0.01 s to 30 s in 5 min, using hundreds of CPU cores.
机译:有限差分时域(FDTD)方法已被广泛用于执行瞬态电磁仿真。与传统的FDTD方法相比,具有非结构化网格和自适应时间步长方案的有限元时域(FETD)方法具有极大地减少未知数和时间步长的潜力。但是,由于需要在每个时间步上求解大规模的非结构化稀疏矩阵,因此FETD方法通常很难利用可用的并行计算资源进行缩放。为了有效利用当前计算平台中的多核资源,我们设计了一种并行FETD方法,该方法使用多个线程来加速解决大型稀疏矩阵的关键步骤,包括构造预处理器和矩阵向量乘法。使用定制的不完整的Cholesky预处理器,我们可以比许多现有的预处理器更快地收敛,并且可以在多个内核上实现可扩展的并行性能。为了进一步减少总的计算时间,我们实现了重叠方案和预处理器重用方案。重叠方案使用并行资源的不同部分同时执行求解器计算和预处理器计算。当增加时间步长时,预处理器重用方案减少了重新计算预处理器的需求,从而减少了可扩展性较低的预处理器计算的频率。它通过减少可扩展性较小的预处理器计算的频率来带来性能优势。计算出的并行FETD结果显示出与FDTD结果相同的准确性。在并行性能方面,使用八个内核,该方法将执行时间减少了4倍(即50个并行效率)。对于现实的盐模型,我们使用数百个CPU内核在5分钟内仿真了TEM响应从0.01 s到30 s。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号