首页> 外文学位 >A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations.
【24h】

A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic Simulations.

机译:用于多尺度电磁仿真的混合频谱元素/有限元素时域方法。

获取原文
获取原文并翻译 | 示例

摘要

In this study we propose a fast hybrid spectral-element time-domain (SETD) / finite-element time-domain (FETD) method for transient analysis of multiscale electromagnetic problems, where electrically fine structures with details much smaller than a typical wavelength and electrically coarse structures comparable to or larger than a typical wavelength coexist.;Simulations of multiscale electromagnetic problems, such as electromagnetic interference (EMI), electromagnetic compatibility (EMC), and electronic packaging, can be very challenging for conventional numerical methods. In terms of spatial discretization, conventional methods use a single mesh for the whole structure, thus a high discretization density required to capture the geometric characteristics of electrically fine structures will inevitably lead to a large number of wasted unknowns in the electrically coarse parts. This issue will become especially severe for orthogonal grids used by the popular finite-difference time-domain (FDTD) method. In terms of temporal integration, dense meshes in electrically fine domains will make the time step size extremely small for numerical methods with explicit time-stepping schemes. Implicit schemes can surpass stability criterion limited by the Courant-Friedrichs-Levy (CFL) condition. However, due to the large system matrices generated by conventional methods, it is almost impossible to employ implicit schemes to the whole structure for time-stepping.;To address these challenges, we propose an efficient hybrid SETD/FETD method for transient electromagnetic simulations by taking advantages of the strengths of these two methods while avoiding their weaknesses in multiscale problems. More specifically, a multiscale structure is divided into several subdomains based on the electrical size of each part, and a hybrid spectral-element / finite-element scheme is proposed for spatial discretization. The hexahedron-based spectral elements with higher interpolation degrees are efficient in modeling electrically coarse structures, and the tetrahedron-based finite elements with lower interpolation degrees are flexible in discretizing electrically fine structures with complex shapes. A non-spurious finite element method (FEM) as well as a non-spurious spectral element method (SEM) is proposed to make the hybrid SEM/FEM discretization work. For time integration we employ hybrid implicit / explicit (IMEX) time-stepping schemes, where explicit schemes are used for electrically coarse subdomains discretized by coarse spectral element meshes, and implicit schemes are used to overcome the CFL limit for electrically fine subdomains discretized by dense finite element meshes. Numerical examples show that the proposed hybrid SETD/FETD method is free of spurious modes, is flexible in discretizing sophisticated structure, and is more efficient than conventional methods for multiscale electromagnetic simulations.
机译:在这项研究中,我们提出了一种快速混合频谱元素时域(SETD)/有限元素时域(FETD)方法,用于多尺度电磁问题的瞬态分析,其中电精细结构的细节远小于典型波长,与典型波长相当或比典型波长更大的粗糙结构共存。对于常规数值方法,对多尺度电磁问题(例如电磁干扰(EMI),电磁兼容性(EMC)和电子封装)的模拟可能非常困难。在空间离散化方面,常规方法对整个结构使用单个网格,因此捕获电精细结构的几何特征所需的高离散密度将不可避免地导致在电粗糙部分中浪费大量未知物。对于流行的有限差分时域(FDTD)方法使用的正交网格,此问题将变得尤为严重。在时间积分方面,在电精细域中的密集网格将使具有明确时间步长方案的数值方法的时间步长极小。隐式方案可以超过由Courant-Friedrichs-Levy(CFL)条件限制的稳定性标准。但是,由于常规方法产生的系统矩阵很大,因此几乎不可能对整个结构采用隐式方案进行时间步长。为了解决这些挑战,我们提出了一种有效的混合SETD / FETD方法,用于瞬态电磁仿真,方法是:利用这两种方法的优势,同时避免它们在多尺度问题中的劣势。更具体地,基于每个部分的电尺寸将多尺度结构划分为几个子域,并提出了用于空间离散化的混合频谱元素/有限元素方案。具有较高插值度的基于六面体的频谱元素可有效地建模电粗糙结构,而具有较低插值度的基于四面体的有限元则可以灵活地离散具有复杂形状的电精细结构。提出了一种非虚假的有限元方法(FEM)以及非虚假的谱元方法(SEM)来进行混合式SEM / FEM离散化工作。对于时间积分,我们采用混合隐式/显式(IMEX)时间步长方案,其中显式方案用于由粗糙光谱元素网格离散化的电粗糙子域,而隐式方案用于克服由稠密离散化的电精细子域的CFL限制有限元网格。数值算例表明,所提出的混合SETD / FETD方法没有杂散模式,可以灵活地离散复杂的结构,并且比常规方法进行多尺度电磁仿真的效率更高。

著录项

  • 作者

    Chen, Jiefu.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号