首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Mining Nonambiguous Temporal Patterns for Interval-Based Events
【24h】

Mining Nonambiguous Temporal Patterns for Interval-Based Events

机译:挖掘基于时间间隔的事件的明确时间模式

获取原文
获取原文并翻译 | 示例

摘要

Previous research on mining sequential patterns mainly focused on discovering patterns from point-based event data. Little effort has been put toward mining patterns from interval-based event data, where a pair of time values is associated with each event. Kam and Fu''s work in 2000 identified 13 temporal relationships between two intervals. According to these temporal relationships, a new variant of temporal patterns was defined for interval-based event data. Unfortunately, the patterns defined in this manner are ambiguous, which means that the temporal relationships among events cannot be correctly represented in temporal patterns. To resolve this problem, we first define a new kind of nonambiguous temporal pattern for interval-based event data. Then, the TPrefixSpan algorithm is developed to mine the new temporal patterns from interval-based events. The completeness and accuracy of the results are also proven. The experimental results show that the efficiency and scalability of the TPrefixSpan algorithm are satisfactory. Furthermore, to show the applicability and effectiveness of temporal pattern mining, we execute experiments to discover temporal patterns from historical Nasdaq data
机译:以前对挖掘顺序模式的研究主要集中在从基于点的事件数据中发现模式。从基于时间间隔的事件数据中挖掘模式的工作很少,其中每个事件都有一对时间值。 Kam和Fu在2000年的工作中确定了两个时间间隔之间的13种时间关系。根据这些时间关系,为基于间隔的事件数据定义了时间模式的新变体。不幸的是,以这种方式定义的模式是模棱两可的,这意味着事件之间的时间关系不能在时间模式中正确表示。为了解决此问题,我们首先为基于间隔的事件数据定义一种新型的模糊时间模式。然后,开发了TPrefixSpan算法以从基于间隔的事件中挖掘新的时间模式。结果的完整性和准确性也得到了证明。实验结果表明,TPrefixSpan算法的效率和可扩展性令人满意。此外,为了展示时间模式挖掘的适用性和有效性,我们执行实验以从纳斯达克历史数据中发现时间模式

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号