首页> 外文期刊>Data & Knowledge Engineering >Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events
【24h】

Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events

机译:从由基于点和间隔的事件组成的序列中发现混合时间模式

获取原文
获取原文并翻译 | 示例

摘要

Previous sequential pattern mining studies have dealt with either point-based event sequences or interval-based event sequences. In some applications, however, event sequences may contain both point-based and interval-based events. These sequences are called hybrid event sequences. Since the relationships among both kinds of events are more diversiform, the information obtained by discovering patterns from these events is more informative. In this study we introduce a hybrid temporal pattern mining problem and develop an algorithm to discover hybrid temporal patterns from hybrid event sequences. We carry out an experiment using both synthetic and real stock price data to compare our algorithm with the traditional algorithms designed exclusively for mining point-based patterns or interval-based patterns. The experimental results indicate that the efficiency of our algorithm is satisfactory. In addition, the experiment also shows that the predicting power of hybrid temporal patterns is higher than that of point-based or interval-based patterns.
机译:先前的顺序模式挖掘研究已经处理了基于点的事件序列或基于间隔的事件序列。但是,在某些应用程序中,事件序列可能包含基于点的事件和基于间隔的事件。这些序列称为混合事件序列。由于这两种事件之间的关系更加多样化,因此通过从这些事件中发现模式所获得的信息更具参考价值。在这项研究中,我们介绍了一种混合时间模式挖掘问题,并开发了一种从混合事件序列中发现混合时间模式的算法。我们使用合成和实际股价数据进行了一项实验,将我们的算法与专门为挖掘基于点的模式或基于区间的模式而设计的传统算法进行了比较。实验结果表明,该算法的有效性令人满意。此外,实验还表明,混合时间模式的预测能力要高于基于点或基于间隔的模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号