首页> 外文会议>Fuzzy Systems and Knowledge Discovery; Lecture Notes in Artificial Intelligence; 4223 >Mining Temporal Patterns from Sequence Database of Interval-Based Events
【24h】

Mining Temporal Patterns from Sequence Database of Interval-Based Events

机译:从基于时间间隔的事件的序列数据库中挖掘时间模式

获取原文
获取原文并翻译 | 示例

摘要

Sequential pattern mining is one of the important techniques of data mining to discover some potential useful knowledge from large databases. However, existing approaches for mining sequential patterns are designed for point-based events. In many applications, the essence of events are interval-based, such as disease suffered, stock price increase or decrease, chatting etc. This paper presents a new algorithm to discover temporal pattern from temporal sequences database consisting of interval-based events.
机译:顺序模式挖掘是数据挖掘中从大型数据库中发现一些潜在有用知识的重要技术之一。但是,现有的挖掘顺序模式的方法被设计用于基于点的事件。在许多应用中,事件的本质是基于时间间隔的,例如疾病的遭受,股价的涨跌,聊天等。本文提出了一种新的算法,可以从基于时间间隔的事件组成的时间序列数据库中发现时间模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号