首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >TopicMachine: Conversion Prediction in Search Advertising Using Latent Topic Models
【24h】

TopicMachine: Conversion Prediction in Search Advertising Using Latent Topic Models

机译:TopicMachine:使用潜在主题模型的搜索广告中的转化预测

获取原文
获取原文并翻译 | 示例

摘要

Search Engine Marketing (SEM) agencies manage thousands of search keywords for their clients. The campaign management dashboards provided by advertisement brokers have interfaces to change search campaign attributes. Using these dashboards, advertisers create test variants for various bid choices, keyword ideas, and advertisement text options. Later on, they conduct controlled experiments for selecting the best performing variants. Given a large keyword portfolio and many variants to consider, campaign management can easily become a burden on even experienced advertisers. In order to target users in need of a particular service, advertisers have to determine the purchase intents or information needs of target users. Once the target intents are determined, advertisers can target those users with relevant search keywords. In order to formulate information needs and to scale campaign management with increasing number of keywords, we propose a framework called TopicMachine, where we learn the latent topics hidden in the available search terms reports. Our hypothesis is that these topics correspond to the set of information needs that best match-make a given client with users. In our experiments, TopicMachine outperformed its closest competitor by $41$ percent on predicting total user subscriptions.
机译:搜索引擎营销(SEM)代理机构为其客户管理数千个搜索关键字。广告经纪人提供的活动管理仪表板具有更改搜索活动属性的界面。广告商使用这些仪表板为各种出价选择,关键字提示和广告文字选项创建测试变体。后来,他们进行了受控实验,以选择性能最佳的变体。有了大量的关键字组合和要考虑的许多变体,即使是经验丰富的广告客户,广告系列管理也很容易成为负担。为了针对需要特定服务的用户,广告商必须确定目标用户的购买意图或信息需求。一旦确定了目标意图,广告商就可以使用相关的搜索关键字作为目标用户。为了制定信息需求并通过增加关键字数量来扩展广告系列管理,我们提出了一个名为 TopicMachine 的框架,在该框架中,我们了解了可用搜索字词报告中隐藏的潜在主题。我们的假设是,这些主题与最能使用户与用户匹配的信息需求相对应。在我们的实验中,TopicMachine通过 $ 41 $ 占预测总用户订阅量的百分比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号