首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Integrating Topic and Latent Factors for Scalable Personalized Review-based Rating Prediction
【24h】

Integrating Topic and Latent Factors for Scalable Personalized Review-based Rating Prediction

机译:整合主题和潜在因素,以实现可扩展的个性化基于审阅的评分预测

获取原文
获取原文并翻译 | 示例

摘要

Personalized review-based rating prediction, a newly emerged research problem, aims at inferring users' ratings over their unrated items using existing reviews and corresponding ratings. While some researchers proposed to learn topic factor from review text to obtain interpretability for rating prediction, they often overlooked the fact that the learned topic factors are limited to review text and cannot fully reveal the complicated relations between reviews and ratings. Moreover, topic modeling based solutions for this problem usually utilize Gibbs sampling algorithms to learn topics and word distributions, resulting in non-negligible computational overload. To address the above challenges, we propose an integrated topic and latent factor model (ITLFM), which combines topic and latent factors in a linear way to make them complement each other for better accuracies in rating prediction tasks. In addition, ITLFM models review text through an additive topic model to reveal user's and item's topic factors simultaneously. To ensure high learning efficiency, we design a hybrid stochastic learning algorithm for ITLFM. We evaluate ITLFM on several standard benchmarks and compare with representative approaches. The experimental results demonstrate that the proposed ITLFM method is computationally efficient and accurate, as well as scalable for large scale applications.
机译:个性化基于评论的评分预测是一个新出现的研究问题,旨在利用现有评论和相应的评分来推断用户对其未评分项目的评分。虽然一些研究人员建议从评论文本中学习主题因素,以获得评级预测的可解释性,但他们常常忽略了这样一个事实,即所学习的主题因素仅限于评论文本,无法充分揭示评论与评级之间的复杂关系。此外,针对该问题的基于主题建模的解决方案通常利用吉布斯采样算法来学习主题和单词分布,从而导致不可忽略的计算过载。为了解决上述挑战,我们提出了一个集成的主题和潜在因素模型(ITLFM),该模型以线性方式组合了主题和潜在因素,以使它们相互补充,从而在评分预测任务中获得更好的准确性。另外,ITLFM模型通过附加主题模型审阅文本,以同时显示用户和项目的主题因素。为了确保较高的学习效率,我们为ITLFM设计了一种混合随机学习算法。我们在几个标准基准上评估ITLFM,并与代表性方法进行比较。实验结果表明,所提出的ITLFM方法具有计算效率高,准确度高以及可大规模应用的可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号