首页> 外文期刊>Knowledge-Based Systems >Aspect-based latent factor model by integrating ratings and reviews for recommender system
【24h】

Aspect-based latent factor model by integrating ratings and reviews for recommender system

机译:通过集成推荐者系统的评分和评论的基于方面的潜在因素模型

获取原文
获取原文并翻译 | 示例

摘要

Recommender system has been recognized as a superior way for solving personal information overload problem. Rating, as an evaluation criteria revealing how much a customer likes a product, has been a foundation of recommender systems for a long period based on the popular latent factor models. However, review texts as the valuable user generated content have been neglected all the time. Recently, models integrating ratings and review texts as training sources have attracted a lot of attention, which may model review texts by topic model or its variants and then link latent factor vectors to topic distribution of review texts. For that, the integrated models need complicated optimization algorithms to fuse the heterogeneous sources, that may cause greater errors.
机译:推荐系统已被认为是解决个人信息超载问题的一种高级方法。长期以来,基于流行的潜在因素模型,评分作为推荐系统的基础一直是推荐系统的基础,而评分是显示客户对产品的喜爱程度的评估标准。但是,作为有价值的用户生成内容的评论文本一直都被忽略。近来,将评分和评论文本作为训练源的集成模型吸引了很多关注,其可以通过主题模型或其变体对评论文本进行建模,然后将潜在因子向量链接到评论文本的主题分布。为此,集成模型需要复杂的优化算法来融合异构源,这可能会导致更大的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号