首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Quantifying Political Leaning from Tweets, Retweets, and Retweeters
【24h】

Quantifying Political Leaning from Tweets, Retweets, and Retweeters

机译:量化来自推文,转发和转发者的政治倾向

获取原文
获取原文并翻译 | 示例

摘要

The widespread use of online social networks (OSNs) to disseminate information and exchange opinions, by the general public, news media, and political actors alike, has enabled new avenues of research in computational political science. In this paper, we study the problem of quantifying and inferring the political leaning of Twitter users. We formulate political leaning inference as a convex optimization problem that incorporates two ideas: (a) users are consistent in their actions of tweeting and retweeting about political issues, and (b) similar users tend to be retweeted by similar audience. We then apply our inference technique to 119 million election-related tweets collected in seven months during the 2012 U.S. presidential election campaign. On a set of frequently retweeted sources, our technique achieves 94 percent accuracy and high rank correlation as compared with manually created labels. By studying the political leaning of 1,000 frequently retweeted sources, 232,000 ordinary users who retweeted them, and the hashtags used by these sources, our quantitative study sheds light on the political demographics of the Twitter population, and the temporal dynamics of political polarization as events unfold.
机译:公众,新闻媒体和政治参与者都广泛使用在线社交网络(OSN)来传播信息和交换意见,这为计算政治学的研究开辟了新途径。在本文中,我们研究了量化和推论Twitter用户的政治倾向的问题。我们将政治倾向推论表述为包含两个思想的凸优化问题:(a)用户对政治问题进行推文和转发的行为是一致的;(b)相似的用户倾向于被相似的受众转发。然后,我们将推理技术应用于2012年美国总统大选期间七个月内收集的1.19亿条与选举相关的推文。与手动创建的标签相比,在一组经常被转发的资源上,我们的技术可达到94%的准确性和高等级相关性。通过研究1000个经常被转发的消息源,232,000个转发了这些消息的普通用户的政治倾向以及这些消息源使用的标签,我们的定量研究揭示了Twitter人口的政治人口统计情况以及事件发展时政治两极化的时间动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号