首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >GALLOP: GlobAL Feature Fused LOcation Prediction for Different Check-in Scenarios
【24h】

GALLOP: GlobAL Feature Fused LOcation Prediction for Different Check-in Scenarios

机译:GALLOP:GlobAL功能融合了不同的签入方案的位置预测

获取原文
获取原文并翻译 | 示例

摘要

Location prediction is widely used to forecast users’ next place to visit based on his/her mobility logs. It is an essential problem in location data processing, invaluable for surveillance, business, and personal applications. It is very challenging due to the sparsity issues of check-in data. An often ignored problem in recent studies is the variety across different check-in scenarios, which is becoming more urgent due to the increasing availability of more location check-in applications. In this paper, we propose a new feature fusion based prediction approach, GALLOP, i.e., GlobAL feature fused LOcation Prediction for different check-in scenarios. Based on the carefully designed feature extraction methods, we utilize a novel combined prediction framework. Specifically, we set out to utilize the density estimation model to profile geographical features, i.e., context information, the factorization method to extract collaborative information, and a graph structure to extract location transition patterns of users’ temporal check-in sequence, i.e., content information. An empirical study on three different check-in datasets demonstrates impressive robustness and improvement of the proposed approach.
机译:位置预测已广泛用于根据用户的移动日志来预测其下一个要访问的地方。这是位置数据处理中的一个基本问题,对于监视,业务和个人应用程序来说是无价的。由于签到数据的稀疏性,这非常具有挑战性。在最近的研究中,一个经常被忽视的问题是跨不同签到场景的多样性,由于越来越多的位置签到应用程序的可用性越来越迫切。在本文中,我们提出了一种新的基于特征融合的预测方法GALLOP,即针对不同签入场景的GlobAL特征融合LOcation预测。基于精心设计的特征提取方法,我们利用了新颖的组合预测框架。具体来说,我们着手利用密度估计模型来描述地理特征(即上下文信息),因式分解方法来提取协作信息,以及利用图结构来提取用户的临时签到序列(即内容)的位置转换模式信息。对三个不同值机数据集的实证研究表明,该方法具有强大的鲁棒性和改进能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号