首页> 外文期刊>Journal of network and computer applications >Effective fine-grained location prediction based on user check-in pattern in LBSNs
【24h】

Effective fine-grained location prediction based on user check-in pattern in LBSNs

机译:LBSN中基于用户签入模式的有效细粒度位置预测

获取原文
获取原文并翻译 | 示例

摘要

Location-Based Social Networks (LBSNs) have built bridges between virtual space and real-world mobility in recent years. The massive check-in data generated in LBSNs makes it possible to predict users' future check-in location, which has proved meaningful for e-commerce developments. Existing studies mainly focus on predicting the next check-in location with a coarse granularity, which only shows limited performance in practical scenarios. In this paper, we propose a comprehensive approach based on user check-in pattern to predict users' future check-in location at any fine-grained time in LBSNs. Firstly, users' check-in pattern involving time periodicity, global popularity and personal preference are analyzed. Secondly, we extract multiple features related to user check-in pattern and explore the predictive power of each individual feature. Thirdly, a set of features are combined into a supervised scoring model and a classification model respectively for predicting user's check in location at a fine-grained time in the future. Finally, extensive experiments on three real-world Foursquare datasets are carefully designed to verify the effectiveness of the proposed approach. Experimental results show that our approach outperforms both baseline methods and state-of-the-art methods on various evaluation metrics.
机译:近年来,基于位置的社交网络(LBSN)建立了虚拟空间与现实世界移动性之间的桥梁。 LBSN中生成的大量签入数据使预测用户未来的签到位置成为可能,这已被证明对电子商务的发展具有重要意义。现有研究主要集中在以粗粒度预测下一个登机位置,这仅表明在实际情况下性能有限。在本文中,我们提出了一种基于用户签到模式的综合方法,以预测用户在LBSN中任何细粒度时间的未来签到位置。首先,分析了用户的登机方式,包括时间周期,全球知名度和个人喜好。其次,我们提取与用户签到模式相关的多个功能,并探索每个功能的预测能力。第三,将一组特征分别组合到监督评分模型和分类模型中,以预测将来用户在细粒度时的位置检查。最后,精心设计了三个真实世界Foursquare数据集的大量实验,以验证所提出方法的有效性。实验结果表明,在各种评估指标上,我们的方法均优于基线方法和最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号