机译:VR-SGD:一种用于机器学习的简单随机方差减少方法
Xidian Univ Sch Artificial Intelligence Minist Educ Key Lab Intelligent Percept & Image Understanding Xian 710126 Shaanxi Peoples R China;
Chinese Univ Hong Kong Dept Comp Sci & Engn Shatin Hong Kong Peoples R China;
Univ Technol Sydney Ctr Artificial Intelligence Ultimo NSW 2007 Australia;
Nanjing Univ Natl Key Lab Novel Software Technol Nanjing 210023 Jiangsu Peoples R China;
Univ Sydney UBTECH Sydney Artificial Intelligence Ctr 6 Cleveland St Darlington NSW 2008 Australia|Univ Sydney Fac Engn & Informat Technol Sch Informat Technol 6 Cleveland St Darlington NSW 2008 Australia;
Convergence; Acceleration; Complexity theory; Stochastic processes; Optimization; Machine learning; Risk management; Stochastic optimization; stochastic gradient descent (SGD); variance reduction; empirical risk minimization; strongly convex and non-strongly convex; smooth and non-smooth;
机译:分散的随机优化和机器学习:统一的差异减少框架,可实现鲁棒性能和快速收敛性
机译:SAAGS:大规模学习的偏置随机差异减少方法
机译:一种加速随机方差减少方法,用于机器学习问题
机译:基于随机稀疏学习的随机方差减少的有效硬阈值方法
机译:论机器学习的方差减少
机译:一种机器学习处理管道用于具有随机方差的FMG信号的可靠手势分类
机译:SAAGS:大规模学习的偏见随机方差减少方法