首页> 外文期刊>Knowledge-Based Systems >An accelerated stochastic variance-reduced method for machine learning problems
【24h】

An accelerated stochastic variance-reduced method for machine learning problems

机译:一种加速随机方差减少方法,用于机器学习问题

获取原文
获取原文并翻译 | 示例

摘要

Variance reduction techniques provide simple and fast algorithms for solving machine learning problems. In this paper, we present a novel stochastic variance-reduced method. The proposed method relies on the mini-batch version of stochastic recursive gradient algorithm (MB-SARAH), which updates stochastic gradient estimates by using a simple recursive scheme. However, facing the challenge of the step size sequence selection in MB-SARAH, we introduce an online step size sequence based on the hypergradient descent (HD) method, which only requires little additional computation. For the proposed method, referred to as MB-SARAH-HD, we provide a general convergence analysis and prove linear convergence for strongly convex problems in expectation. Specifically, we prove that the proposed method has sublinear convergence rate in a single outer loop. We also prove that the iteration complexity outperforms several variants of the state-of-the-art stochastic gradient descent (SGD) method under suitable conditions. Numerical experiments on standard datasets are provided to demonstrate the efficacy and superiority of our MB-SARAH-HD method over existing approaches in the literature. (C) 2020 Elsevier B.V. All rights reserved.
机译:方差减少技术提供了用于解决机器学习问题的简单和快速算法。在本文中,我们提出了一种新型随机方差减少方法。所提出的方法依赖于随机递归梯度算法(MB-SARAH)的迷你批量版本,通过使用简单的递归方案来更新随机梯度估计。然而,面对MB-Sarah中的步长序列选择的挑战,我们在基于HypergRadient下降(HD)方法的基础上介绍了一个在线步骤尺寸序列,这只需要几乎不需要额外的计算。对于所提出的方法,称为MB-Sarah-HD,我们提供了一般的收敛性分析,并证明了在期望中强凸起问题的线性收敛。具体地,我们证明了所提出的方法在单个外环中具有额定增长速率。我们还证明,在合适的条件下,迭代复杂性优于最先进的随机梯度下降(SGD)方法的几种变体。提供了标准数据集上的数值实验,以证明我们的MB-Sarah-HD方法在文献中现有方法中的功效和优越性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号