首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Re-Revisiting Learning on Hypergraphs: Confidence Interval, Subgradient Method, and Extension to Multiclass
【24h】

Re-Revisiting Learning on Hypergraphs: Confidence Interval, Subgradient Method, and Extension to Multiclass

机译:重新讨论超图上的学习:置信区间,次梯度法和多类扩展

获取原文
获取原文并翻译 | 示例

摘要

We revisit semi-supervised learning on hypergraphs. Same as previous approaches, our method uses a convex program whose objective function is not everywhere differentiable. We exploit the non-uniqueness of the optimal solutions, and consider confidence intervals which give the exact ranges that unlabeled vertices take in any optimal solution. Moreover, we give a much simpler approach for solving the convex program based on the subgradient method. Our experiments on real-world datasets confirm that our confidence interval approach on hypergraphs outperforms existing methods, and our subgradient method gives faster running times when the number of vertices is much larger than the number of edges. Our experiments also support that using directed hypergraphs to capture causal relationships can improve the prediction accuracy. Furthermore, our model can be readily extended to capture multiclass learning.
机译:我们重新讨论超图上的半监督学习。与以前的方法一样,我们的方法使用的凸程序的目标函数并非在各处都是可微的。我们利用最优解的非唯一性,并考虑置信区间,该区间给出了未标记顶点在任何最优解中的确切范围。此外,我们给出了一种基于次梯度法求解凸程序的简单得多的方法。我们对真实数据集的实验证实,我们对超图的置信区间方法优于现有方法,并且当顶点数量远大于边数量时,次梯度方法的运行时间更快。我们的实验还支持使用有向超图捕获因果关系可以提高预测准确性。此外,我们的模型可以轻松扩展以捕获多类学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号