首页> 外文期刊>IEEE Transactions on Information Theory >On the cutoff point for pairwise enabling in multiple access systems
【24h】

On the cutoff point for pairwise enabling in multiple access systems

机译:在多点访问系统中成对启用的截止点

获取原文
获取原文并翻译 | 示例

摘要

Let p/sup 0/ be the minimum Bernoulli probability for which pairwise enabling is an optimal group testing algorithm under a Bernoulli arrival sequence model. In a previous work, it was shown that 0.430>or=p/sup 0/>or=0.568 for unbounded Bernoulli arrival sequences, based on the threshold probabilities at which certain triple enabling algorithms (operating with and without the aid of a helpful genie, respectively) become more efficient. By deriving constructive results using the powerful but seemingly nonconstructive upper-bounding technique introduced by N.A. Mikhailov and B.S. Tsybakov (1981), the author sharpens this result by proving that p/sup 0/>or=0.5 for unbounded arrival sequences, and that p/sup 0/ approximately=0.545 in the finite arrival sequence model recently studied by F.K. Hwang and X.M. Chang (1987). The present results for unbounded arrival sequences also extend to the reservation schemes considered by Hwang and Chang, where it is now shown that 0.386>or=p/sup 0//sub I/>or=0.387 under the intermediate reservation model and 0.436>or=p/sup 0//sub G/>or=1/ square root 3 under the Gudjohnsen reservation model, respectively.
机译:令p / sup 0 /为在伯努利到达序列模型下成对启用为最优组测试算法的最小伯努利概率。在以前的工作中,表明了无限制的伯努利到达序列的0.430> or = p / sup 0 />或= 0.568,基于阈值概率,在阈值概率下,某些三重启用算法(使用或不使用有用的精灵进行操作) )变得更有效率。通过使用N.A. Mikhailov和B.S.引入的强大但看似非建设性的上限技术来得出建设性结果。 Tsybakov(1981)通过证明无界到达序列的p / sup 0 />或= 0.5,以及F.K.最近研究的有限到达序列模型的p / sup 0 /大约为0.545,使结果更加精确。黄和X.M. Chang(1987)。无界到达序列的当前结果还扩展到Hwang和Chang所考虑的预留方案,现在表明在中间预留模型下0.386>或= p / sup 0 // sub I />或= 0.387和0.436>在Gudjohnsen保留模型下,分别为or = p / sup 0 // sub G />或= 1 /平方根3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号