首页> 外文期刊>IEEE Transactions on Information Theory >General entropy criteria for inverse problems, with applications to data compression, pattern classification, and cluster analysis
【24h】

General entropy criteria for inverse problems, with applications to data compression, pattern classification, and cluster analysis

机译:反问题的通用熵准则,应用于数据压缩,模式分类和聚类分析

获取原文
获取原文并翻译 | 示例

摘要

Minimum distance approaches are considered for the reconstruction of a real function from finitely many linear functional values. An optimal class of distances satisfying an orthogonality condition analogous to that enjoyed by linear projections in Hilbert space is derived. These optimal distances are related to measures of distances between probability distributions recently introduced by C.R. Rao and T.K. Nayak (1985) and possess the geometric properties of cross entropy useful in speech and image compression, pattern classification, and cluster analysis. Several examples from spectrum estimation and image processing are discussed.
机译:考虑使用最小距离方法从有限的多个线性函数值重建实函数。推导满足与希尔伯特空间中线性投影相似的正交性条件的最佳距离类别。这些最佳距离与C.R. Rao和T.K.最近引入的概率分布之间的距离度量有关。 Nayak(1985)并具有交叉熵的几何特性,可用于语音和图像压缩,模式分类和聚类分析。讨论了一些来自光谱估计和图像处理的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号