首页> 外文期刊>Computing in science & engineering >The Clustered Causal State Algorithm: Efficient Pattern Discovery for Lossy Data-Compression Applications
【24h】

The Clustered Causal State Algorithm: Efficient Pattern Discovery for Lossy Data-Compression Applications

机译:聚类因果状态算法:有损数据压缩应用程序的有效模式发现

获取原文
获取原文并翻译 | 示例

摘要

Pattern discovery is a potential boon for data compression. By identifying generic patterns without human supervision, pattern discovery algorithms can extract the most relevant information for greatest fidelity in lossy compression. However, current approaches to pattern discovery are inefficient and produce cumbersome descriptions of patterns. The Clustered Causal State Algorithm (CCSA) is a new pattern discovery algorithm incorporating recent clustering technology. This algorithm sacrifices accuracy for increased efficiency and smaller model sizes. This makes CCSA ideal for lossy data compression and other real-time applications. This algorithm is compared to other pattern discovery algorithms and demonstrated in an image compression application.
机译:模式发现是数据压缩的潜在好处。通过在无需人工监督的情况下识别通用模式,模式发现算法可以提取最相关的信息,从而在有损压缩中获得最大的保真度。然而,当前的模式发现方法效率低下,并且产生了繁琐的模式描述。聚类因果状态算法(CCSA)是一种结合了最新聚类技术的新型模式发现算法。该算法为提高效率和减小模型尺寸而牺牲了精度。这使得CCSA非常适合有损数据压缩和其他实时应用。将该算法与其他模式发现算法进行了比较,并在图像压缩应用程序中进行了演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号