首页> 外文期刊>IEEE Transactions on Information Theory >New Families of Optimal Frequency-Hopping Sequences of Composite Lengths
【24h】

New Families of Optimal Frequency-Hopping Sequences of Composite Lengths

机译:复合长度最优跳频序列的新族

获取原文
获取原文并翻译 | 示例

摘要

Frequency-hopping sequences (FHSs) are employed to mitigate the interferences caused by the hits of frequencies in frequency-hopping spread spectrum systems. In this paper, we present two new constructions for FHS sets. We first give a new construction for FHS sets of length $nN$ for two positive integers $n$ and $N$ with $gcd (n,N)=1$ . We then present another construction for FHS sets of length $(q-1)N$ , where $q$ is a prime power satisfying $gcd (q-1,N)=1$ . By these two constructions, we obtain infinitely many new optimal FHS sets with respect to the Peng-Fan bound as well as new optimal FHSs with respect to the Lempel-Greenberger bound, which have length $nN$ or $n(q-1)N$ . As a result, a great deal of flexibility may be provided in the choice of FHS sets for a given frequency-hopping spread spectrum system.
机译:跳频序列(FHS)用于缓解由跳频扩频系统中的频率冲击引起的干扰。在本文中,我们介绍了FHS装置的两种新结构。我们首先给出一个长度为$ nN $的FHS集的新构造,其中包含两个正整数$ n $和$ N $,其中$ gcd(n,N)= 1 $。然后,我们给出长度为({q-1)N $的FHS集的另一种构造,其中$ q $是满足$ gcd(q-1,N)= 1 $的素数幂。通过这两种构造,我们获得了关于Peng-Fan边界的无限多个新的最佳FHS集以及关于Lempel-Greenberger边界的新型最佳FHS,其长度为$ nN $或$ n(q-1) N $。结果,对于给定的跳频扩频系统,在选择FHS集时可以提供很大的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号