首页> 外文期刊>IEEE transactions on information forensics and security >Key-Based Dynamic Functional Obfuscation of Integrated Circuits Using Sequentially Triggered Mode-Based Design
【24h】

Key-Based Dynamic Functional Obfuscation of Integrated Circuits Using Sequentially Triggered Mode-Based Design

机译:使用基于顺序触发的基于模式的设计对集成电路进行基于键的动态功能混淆

获取原文
获取原文并翻译 | 示例
           

摘要

This paper proposes a novel technique for hardware obfuscation termed dynamic functional obfuscation. Hardware obfuscation refers to a set of countermeasures used against IC counterfeiting and illegal overproduction. Traditionally, obfuscation encrypts semiconductor circuits using key inputs which must be set to a correct value to operate the circuit correctly. By keeping the key values secret during the manufacturing process, any attempt by unauthorized parties to overproduce chips or pirate designs is thwarted. The proposed dynamic technique differs from existing fixed obfuscation schemes as the obfuscating signals change over time. This results in inconsistent circuit behavior upon input of incorrect key, where the chip operates correctly sometimes and fails sometimes. The advantage of dynamic obfuscation is that it results in stronger obfuscation by increasing the time complexity of deciphering the correct key using brute-force attack, even with shorter keys. Moreover, the dynamic nature of these circuits also makes them resistant to reverse engineering and SAT solver-based attacks. To achieve dynamic obfuscation, ideas from hardware Trojan literature and sequentially triggered counters are utilized. A demonstration of obfuscation on sequential circuits implementing fast Fourier transform (FFT) algorithm and Ethernet IP shows low overall area and power overheads of less than 1%. Security in terms of time to attack for the FFT circuit (for a key size of 30 bits and a system operating at 100 MHz) is increased to 1021,055 years using dynamic obfuscation compared with only 5.36 s using fixed obfuscation schemes. For the Ethernet IP core, time to attack of dynamic obfuscation with a key size of 32 bits is 1046,423,135 years compared with 21.47s with fixed obfuscation. It is also shown that for a key size of K bits, the lower bound for time to attack using brute-force is proportional to K2K and K22K for the proposed design using one and two random number generators, respectively.
机译:本文提出了一种新的硬件混淆技术,称为动态功能混淆。硬件混淆是指用于防止IC仿冒和非法超量生产的一系列对策。传统上,混淆处理使用键输入对半导体电路进行加密,必须将键输入设置为正确的值才能正确操作电路。通过在制造过程中将密钥值保密,可以防止未经授权的各方过度生产芯片或盗版设计的任何企图。所提出的动态技术与现有的固定混淆方案不同,因为混淆信号会随时间变化。输入错误的按键会导致电路行为不一致,有时芯片会正确运行,有时会出现故障。动态混淆的优势在于,即使使用较短的密钥,也可以通过使用蛮力攻击增加解密正确密钥的时间复杂度,从而导致更强的混淆。此外,这些电路的动态特性还使其能够抵抗逆向工程和基于SAT求解器的攻击。为了实现动态混淆,利用了来自硬件Trojan文献和顺序触发的计数器的思想。对实现快速傅里叶变换(FFT)算法和以太网IP的时序电路进行混淆的演示表明,总体面积较小,功耗开销不到1%。使用动态模糊处理,FFT电路的攻击时间(密钥大小为30位,系统工作于100 MHz)的安全性提高到1021,055年,而使用固定模糊处理方案的安全性只有5.36 s。对于以太网IP内核,密钥大小为32位的动态混淆攻击的时间为1046,423,135年,而固定混淆的攻击时间为21.47s。还表明,对于K位的密钥大小,对于拟议的设计,使用蛮力攻击的时间下限与K2 K 和K2 2K 成比例分别使用一个和两个随机数生成器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号