首页> 外文期刊>IEEE transactions on information forensics and security >Differential Private Data Collection and Analysis Based on Randomized Multiple Dummies for Untrusted Mobile Crowdsensing
【24h】

Differential Private Data Collection and Analysis Based on Randomized Multiple Dummies for Untrusted Mobile Crowdsensing

机译:基于不可信移动人群的基于随机多个虚拟变量的差分私有数据收集和分析

获取原文
获取原文并翻译 | 示例

摘要

Mobile crowdsensing, which collects environmental information from mobile phone users, is growing in popularity. These data can be used by companies for marketing surveys or decision making. However, collecting sensing data from other users may violate their privacy. Moreover, the data aggregator and/or the participants of crowdsensing may be untrusted entities. Recent studies have proposed randomized response schemes for anonymized data collection. This kind of data collection can analyze the sensing data of users statistically without precise information about other users’ sensing results. However, traditional randomized response schemes and their extensions require a large number of samples to achieve proper estimation. In this paper, we propose a new anonymized data-collection scheme that can estimate data distributions more accurately. Using simulations with synthetic and real datasets, we prove that our proposed method can reduce the mean squared error and the JS divergence by more than 85% as compared with other existing studies.
机译:收集来自手机用户的环境信息的移动人群感知技术正在日益普及。公司可以将这些数据用于市场调查或决策。但是,从其他用户收集感测数据可能会侵犯他们的隐私。此外,数据聚合器和/或众包参与者可能是不受信任的实体。最近的研究提出了用于匿名数据收集的随机响应方案。这种数据收集可以统计分析用户的感知数据,而无需其他用户的感知结果的准确信息。但是,传统的随机响应方案及其扩展需要大量样本才能实现正确的估计。在本文中,我们提出了一种新的匿名数据收集方案,该方案可以更准确地估计数据分布。通过使用具有合成数据集和真实数据集的模拟,我们证明了与其他现有研究相比,我们提出的方法可以将均方误差和JS散度降低85%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号