首页> 外文OA文献 >Differentially Private and Skew-Aware Spatial Decompositions for Mobile Crowdsensing
【2h】

Differentially Private and Skew-Aware Spatial Decompositions for Mobile Crowdsensing

机译:差异私有和歪斜的空间分解,用于移动众脉

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile Crowdsensing (MCS) is a paradigm for collecting large-scale sensor data by leveraging mobile devices equipped with small and low-powered sensors. MCS has recently received considerable attention from diverse fields, because it can reduce the cost incurred in the process of collecting a large amount of sensor data. However, in the task assignment process in MCS, to allocate the requested tasks efficiently, the workers need to send their specific location to the requester, which can raise serious location privacy issues. In this paper, we focus on the methods for publishing differentially a private spatial histogram to guarantee the location privacy of the workers. The private spatial histogram is a sanitized spatial index where each node represents the sub-regions and contains the noisy counts of the objects in each sub-region. With the sanitized spatial histograms, it is possible to estimate approximately the number of workers in the arbitrary area, while preserving their location privacy. However, the existing methods have given little concern to the domain size of the input dataset, leading to the low estimation accuracy. This paper proposes a partitioning technique SAGA (Skew-Aware Grid pArtitioning) based on the hotspots, which is more appropriate to adjust the domain size of the dataset. Further, to optimize the overall errors, we lay a uniform grid in each hotspot. Experimental results on four real-world datasets show that our method provides an enhanced query accuracy compared to the existing methods.
机译:移动人群(MCS)是用于通过利用配备小型和低功耗传感器的移动设备收集大规模传感器数据的范例。 MCS最近从各种领域获得了相当大的关注,因为它可以降低收集大量传感器数据的过程中产生的成本。但是,在MCS中的任务分配过程中,要有效地分配所请求的任务,工作人员需要将其特定位置发送到请求者,这可以提高严重的位置隐私问题。在本文中,我们专注于出版差异私人空间直方图的方法,以保证工人的位置隐私。私有空间直方图是消毒空间索引,其中每个节点代表子区域,并包含每个子区域中对象的噪声计数。通过消毒的空间直方图,可以估计任意区域的工人数量,同时保留其位置隐私。然而,现有方法对输入数据集的域大小很少表示关注,导致低估计精度。本文提出了一种基于热点的分区技术SAGA(偏斜感知网格分区),其更适合调整数据集的域大小。此外,为了优化整体错误,我们在每个热点中均匀栅格。 4个真实数据集的实验结果表明,与现有方法相比,我们的方法提供了增强的查询精度。

著录项

  • 作者

    Jong Kim; Yon Chung;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号