首页> 外文期刊>IEEE Transactions on Image Processing >Regularized constrained total least squares image restoration
【24h】

Regularized constrained total least squares image restoration

机译:正则约束总最小二乘图像复原

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of restoring an image distorted by a linear space-invariant (LSI) point-spread function (PSF) that is not exactly known is formulated as the solution of a perturbed set of linear equations. The regularized constrained total least-squares (RCTLS) method is used to solve this set of equations. Using the diagonalization properties of the discrete Fourier transform (DFT) for circulant matrices, the RCTLS estimate is computed in the DFT domain. This significantly reduces the computational cost of this approach and makes its implementation possible even for large images. An error analysis of the RCTLS estimate, based on the mean-squared-error (MSE) criterion, is performed to verify its superiority over the constrained total least-squares (CTLS) estimate. Numerical experiments for different errors in the PSF are performed to test the RCTLS estimator. Objective and visual comparisons are presented with the linear minimum mean-squared-error (LMMSE) and the regularized least-squares (RLS) estimator. Our experiments show that the RCTLS estimator reduces significantly ringing artifacts around edges as compared to the two other approaches.
机译:在本文中,恢复由于线性空间不变(LSI)点扩展函数(PSF)而产生的图像失真的问题,该问题尚未完全知道,该问题被表示为一组线性方程组的解。正则化约束总最小二乘法(RCTLS)方法用于求解这组方程。使用循环矩阵的离散傅立叶变换(DFT)的对角化属性,可以在DFT域中计算RCTLS估计。这显着降低了这种方法的计算成本,即使对于大图像也可以实现。基于均方误差(MSE)准则对RCTLS估计进行误差分析,以验证其在约束总最小二乘(CTLS)估计上的优越性。进行了PSF中不同误差的数值实验,以测试RCTLS估计器。使用线性最小均方误差(LMMSE)和正则化最小二乘(RLS)估计量进行客观和视觉比较。我们的实验表明,与其他两种方法相比,RCTLS估计器可显着减少边缘周围的振铃伪影。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号