首页> 外文期刊>IEEE Transactions on Image Processing >Adaptive regularized constrained least squares image restoration
【24h】

Adaptive regularized constrained least squares image restoration

机译:自适应正则约束最小二乘图像复原

获取原文
获取原文并翻译 | 示例

摘要

In noisy environments, a constrained least-squares (CLS) approach is presented to restore images blurred by a Gaussian impulse response, where instead of choosing a global regularization parameter, each point in the signal has its own associated regularization parameter. These parameters are found by constraining the weighted standard deviation of the wavelet transform coefficients on the finest scale of the inverse signal by a function r which is a local measure of the intensity variations around each point of the blurred and noisy observed signal. Border ringing in the inverse solution is proposed decreased by manipulating its wavelet transform coefficients on the finest scales close to the borders. If the noise in the inverse solution is significant, wavelet transform techniques are also applied to denoise the solution. Examples are given for images, and the results are shown to outperform the optimum constrained least-squares solution using a global regularization parameter, both visually and in the mean squared error sense.
机译:在嘈杂的环境中,提出了一种受约束的最小二乘(CLS)方法来恢复由高斯脉冲响应模糊的图像,在该方法中,信号的每个点都选择了自己的关联正则化参数,而不是选择全局正则化参数。这些参数是通过函数r限制小波变换系数的加权标准偏差在逆信号的最佳尺度上找到的,该函数是围绕模糊和有噪声的观察信号的每个点的强度变化的局部度量。提出通过在接近边界的最佳尺度上操纵其小波变换系数来减少逆解中的边界振铃。如果逆解中的噪声很大,则也可以应用小波变换技术来对解噪。给出了图像示例,结果显示,在视觉上和均方误差意义上,使用全局正则化参数均优于最佳约束最小二乘解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号