首页> 外文期刊>IEEE Transactions on Image Processing >Adaptively regularized constrained total least-squares image restoration
【24h】

Adaptively regularized constrained total least-squares image restoration

机译:自适应正则约束总最小二乘法图像复原

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel algorithm for image restoration is proposed based on constrained total least-squares (CTLS) estimation, that is, adaptively regularized CTLS (ARCTLS). It is well known that in the regularized CTLS (RCTLS) method, selecting a proper regularization parameter is very difficult. For solving this problem, we take the first-order partial derivative of the classic equation of RCTLS image restoration and do some simplification with it. Then, we deduce an approximate formula, which can be used to adaptively calculate the best regularization parameter along with the degraded image to be restored. We proved that the convergence and the stability of the solution could be well satisfied. The results of our experiments indicate that using this method can make an arbitrary initial parameter be an optimal one, which results in a good restored image of high quality.
机译:本文提出了一种基于约束总最小二乘(CTLS)估计的图像恢复新算法,即自适应正则化CTLS(ARCTLS)。众所周知,在正则化CTLS(RCTLS)方法中,选择合适的正则化参数非常困难。为了解决这个问题,我们采用了RCTLS图像恢复经典方程的一阶偏导数,并对其做了一些简化。然后,我们推导出一个近似公式,该公式可用于自适应地计算最佳正则化参数以及要还原的退化图像。我们证明了该解决方案的收敛性和稳定性是可以令人满意的。我们的实验结果表明,使用这种方法可以使任意初始参数成为最佳参数,从而获得高质量的良好还原图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号