首页> 外文期刊>IEEE Transactions on Image Processing >Partial eigenvalue decomposition of large images using spatial temporal adaptive method
【24h】

Partial eigenvalue decomposition of large images using spatial temporal adaptive method

机译:基于空间时间自适应方法的大图像局部特征值分解

获取原文
获取原文并翻译 | 示例

摘要

Finding eigenvectors of a sequence of real images has usually been considered to require too much computation to be practical. Our spatial temporal adaptive (STA) method reduces the computational complexity of the approximate partial eigenvalue decomposition based on image encoding. Spatial temporal encoding is used to reduce storage and computation, and then, singular value decomposition (SVD) is applied. After the adaptive discrete cosine transform (DCT) encoding, blocks that are similar in consecutive images are consolidated. The computational economy of our method was verified by tests on different large sets of images. The results show that this method is 6 to 10 times faster than the traditional SVD method for several kinds of real images. The economy of this algorithm increases with increasing correlation within the image and with increasing correlation between consecutive images within a set. This algorithm is useful for pattern recognition using eigenvectors, which is a research field that has been active recently.
机译:通常认为寻找真实图像序列的特征向量需要太多的计算才能实用。我们的空间时间自适应(STA)方法降低了基于图像编码的近似部分特征值分解的计算复杂度。使用空间时间编码来减少存储和计算,然后应用奇异值分解(SVD)。在自适应离散余弦变换(DCT)编码之后,合并连续图像中相似的块。通过对不同的大型图像集进行测试,验证了我们方法的计算经济性。结果表明,对于几种真实图像,该方法比传统的SVD方法快6至10倍。该算法的经济性随着图像内相关性的增加以及一组内连续图像之间相关性的增加而增加。该算法对于使用特征向量的模式识别非常有用,这是最近活跃的研究领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号