首页> 外文期刊>IEEE Transactions on Image Processing >Contour detection based on nonclassical receptive field inhibition
【24h】

Contour detection based on nonclassical receptive field inhibition

机译:基于非经典感受野抑制的轮廓检测

获取原文
获取原文并翻译 | 示例

摘要

We propose a biologically motivated method, called nonclassical receptive field (non-CRF) inhibition (more generally, surround inhibition or suppression), to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the primary visual cortex of monkeys and has been shown to influence human visual perception as well. Essentially, the response of an edge detector at a certain point is suppressed by the responses of the operator in the region outside the supported area. We combine classical edge detection with isotropic and anisotropic inhibition, both of which have counterparts in biology. We also use a biologically motivated method (the Gabor energy operator) for edge detection. The resulting operator responds strongly to isolated lines, edges, and contours, but exhibits weak or no response to edges that are part of texture. We use natural images with associated ground truth contour maps to assess the performance of the proposed operator for detecting contours while suppressing texture edges. Our method enhances contour detection in cluttered visual scenes more effectively than classical edge detectors used in machine vision (Canny edge detector). Therefore, the proposed operator is more useful for contour-based object recognition tasks, such as shape comparison, than traditional edge detectors, which do not distinguish between contour and texture edges. Traditional edge detection algorithms can, however, also be extended with surround suppression. This study contributes also to the understanding of inhibitory mechanisms in biology.
机译:我们提出一种生物学动机的方法,称为非经典感受野(non-CRF)抑制(更一般地,周围抑制或抑制),以改善机器视觉中的轮廓检测。猴子的初级视觉皮层中80%的方向选择性神经元均表现出非CRF抑制作用,并且也显示出它会影响人类的视觉感知。本质上,边缘检测器在特定点处的响应被操作员在支撑区域之外的区域中的响应所抑制。我们将经典的边缘检测与各向同性和各向异性抑制相结合,两者在生物学上都是相对应的。我们还使用生物学动机方法(Gabor能量算子)进行边缘检测。生成的运算符对孤立的线条,边缘和轮廓有很强的响应,但是对作为纹理一部分的边缘则显示出微弱或没有响应。我们将自然图像与相关的地面真实轮廓图一起使用,以评估提出的算子在检测轮廓的同时抑制纹理边缘的性能。我们的方法比机器视觉中使用的经典边缘检测器(Canny边缘检测器)更有效地增强了杂乱视觉场景中的轮廓检测。因此,与不区分轮廓和纹理边缘的传统边缘检测器相比,所提出的算子对基于轮廓的对象识别任务(例如形状比较)更有用。但是,传统的边缘检测算法也可以通过环绕抑制来扩展。这项研究也有助于理解生物学中的抑制机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号