首页> 外文期刊>IEEE Transactions on Image Processing >Learning Nonclassical Receptive Field Modulation for Contour Detection
【24h】

Learning Nonclassical Receptive Field Modulation for Contour Detection

机译:学习不合计的轮廓检测的非相关接受场调制

获取原文
获取原文并翻译 | 示例

摘要

This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.
机译:这项工作通过将非分化场接收场调制机制与深度学习框架组合,开发了一种生物学启发的神经网络,用于自然图像中的轮廓检测。输入图像首先通过本地特征检测器卷积以产生经典接收场响应,然后为每个特征图构造相应的调制内核以模拟非分类接收场调制行为。调节效果可以激活较大的皮质区域,从而允许皮质神经元集成更广泛的视觉信息以识别复杂的情况。另外,为了以各种尺度表征空间结构,使用多分辨率技术来表示从良好粗糙的视野信息。组合不同的刻度响应以估计轮廓概率。我们的方法在所有生物学启发的轮廓检测模型中实现了最先进的结果。该研究提供了一种改进轮廓检测的视觉建模的方法,并激发新的思想,以将更多的大脑认知机制集成到深神经网络中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号