首页> 外文OA文献 >Contour detection based on nonclassical receptive field inhibition
【2h】

Contour detection based on nonclassical receptive field inhibition

机译:基于非经典感受野抑制的轮廓检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the primary visual cortex of monkeys and has been demonstrated to influence the visual perception of man as well. The essence of this mechanism is that the response of an edge detector in a certain point is suppressed by the responses of the operator in the region outside the area of operator support. We combine classical edge detection with two types of inhibitory mechanism, isotropic and anisotropic inhibition, both of which have counterparts in biology. For edge detection, we also use a biologically motivated method (the Gabor energy operator). The resulting operator responds strongly to isolated lines, edges, and contours, but exhibits a weaker or no response to edges that make part of texture. We use natural images with associated ground truth contour maps to assess the performance of the proposed operator regarding the detection of contours while suppressing texture edges. The results show that our method enhances contour detection in cluttered visual scenes more effectively than classical edge detectors used in machine vision (Canny edge detector). Therefore, the proposed operator is more useful for contour-based object recognition tasks, such as shape comparison, than traditional edge detectors, which do not distinguish between contour and texture edges. Traditional edge detection algorithms can, however, also be extended with surround suppression. Next to the advancement of contour detection in machine vision, this study contributes to the understanding of inhibitory mechanisms in biology.
机译:我们提出了一种生物学动机的计算步骤,称为非经典感受野(non-CRF)抑制,更通常是围绕抑制或抑制,以改善机器视觉中的轮廓检测。猴子的初级视觉皮层中80%的方向选择性神经元均表现出非CRF抑制作用,并且已证明其也能影响人的视觉感知。该机制的本质在于,边缘检测器在某一点的响应被操作员在操作员支撑区域之外的区域中的响应所抑制。我们将经典的边缘检测与两种类型的抑制机制(各向同性和各向异性抑制)结合在一起,这两种抑制机制在生物学上都是相对应的。对于边缘检测,我们还使用了生物激励方法(Gabor能量算子)。生成的算子对孤立的线条,边缘和轮廓有很强的响应,但是对构成纹理一部分的边缘则显示出较弱的响应或没有响应。我们将自然图像与相关的地面真相等高线图一起使用,以在抑制纹理边缘的同时评估提出的算子在检测等高线方面的性能。结果表明,与机器视觉中使用的经典边缘检测器(Canny边缘检测器)相比,我们的方法可以更有效地增强杂乱视觉场景中的轮廓检测。因此,与不区分轮廓和纹理边缘的传统边缘检测器相比,所提出的算子对基于轮廓的对象识别任务(例如形状比较)更有用。但是,传统的边缘检测算法也可以通过环绕抑制来扩展。继机器视觉中轮廓检测的发展之后,这项研究有助于理解生物学中的抑制机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号