首页> 外文期刊>Image Processing, IEEE Transactions on >Image Inpainting by Patch Propagation Using Patch Sparsity
【24h】

Image Inpainting by Patch Propagation Using Patch Sparsity

机译:使用补丁稀疏性通过补丁传播进行图像修复

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel examplar-based inpainting algorithm through investigating the sparsity of natural image patches. Two novel concepts of sparsity at the patch level are proposed for modeling the patch priority and patch representation, which are two crucial steps for patch propagation in the examplar-based inpainting approach. First, patch structure sparsity is designed to measure the confidence of a patch located at the image structure (e.g., the edge or corner) by the sparseness of its nonzero similarities to the neighboring patches. The patch with larger structure sparsity will be assigned higher priority for further inpainting. Second, it is assumed that the patch to be filled can be represented by the sparse linear combination of candidate patches under the local patch consistency constraint in a framework of sparse representation. Compared with the traditional examplar-based inpainting approach, structure sparsity enables better discrimination of structure and texture, and the patch sparse representation forces the newly inpainted regions to be sharp and consistent with the surrounding textures. Experiments on synthetic and natural images show the advantages of the proposed approach.
机译:通过研究自然图像斑块的稀疏性,介绍了一种新的基于样例的修复算法。提出了补丁级别的两个稀疏概念,用于对补丁优先级和补丁表示进行建模,这是基于示例的修复方法中补丁传播的两个关键步骤。首先,斑块结构稀疏性被设计为通过其与邻近斑块的非零相似度的稀疏性来测量位于图像结构(例如,边缘或角)处的斑块的置信度。具有更大结构稀疏性的补丁将被分配更高的优先级,以进行进一步的修复。第二,假设在稀疏表示的框架中,可以通过局部补丁一致性约束下候选补丁的稀疏线性组合来表示要填充的补丁。与传统的基于样例的修补方法相比,结构稀疏性可以更好地区分结构和纹理,并且补丁稀疏表示迫使新修补的区域变得清晰且与周围纹理一致。在合成图像和自然图像上进行的实验表明了该方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号