首页> 外文期刊>Image Processing, IEEE Transactions on >Active Reranking for Web Image Search
【24h】

Active Reranking for Web Image Search

机译:主动重排Web图像搜索

获取原文
获取原文并翻译 | 示例

摘要

Image search reranking methods usually fail to capture the user's intention when the query term is ambiguous. Therefore, reranking with user interactions, or active reranking, is highly demanded to effectively improve the search performance. The essential problem in active reranking is how to target the user's intention. To complete this goal, this paper presents a structural information based sample selection strategy to reduce the user's labeling efforts. Furthermore, to localize the user's intention in the visual feature space, a novel local-global discriminative dimension reduction algorithm is proposed. In this algorithm, a submanifold is learned by transferring the local geometry and the discriminative information from the labelled images to the whole (global) image database. Experiments on both synthetic datasets and a real Web image search dataset demonstrate the effectiveness of the proposed active reranking scheme, including both the structural information based active sample selection strategy and the local-global discriminative dimension reduction algorithm.
机译:当查询字词不明确时,图像搜索重新排序方法通常无法捕获用户的意图。因此,为了有效地提高搜索性能,强烈要求通过用户交互来进行排名或主动进行排名。主动重新排名的本质问题是如何针对用户的意图。为了实现这一目标,本文提出了一种基于结构信息的样本选择策略,以减少用户的标记工作量。此外,为了在视觉特征空间中定位用户的意图,提出了一种新颖的局部-全局判别维数减少算法。在该算法中,通过将局部几何图形和判别信息从已标记图像传输到整个(全局)图像数据库来学习子流形。在合成数据集和真实Web图像搜索数据集上的实验都证明了所提出的主动重排方案的有效性,包括基于结构信息的主动样本选择策略和局部全局判别维数减少算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号