首页> 外文期刊>Image Processing, IEEE Transactions on >An Attribute-Assisted Reranking Model for Web Image Search
【24h】

An Attribute-Assisted Reranking Model for Web Image Search

机译:Web图像搜索的属性辅助重排模型

获取原文
获取原文并翻译 | 示例

摘要

Image search reranking is an effective approach to refine the text-based image search result. Most existing reranking approaches are based on low-level visual features. In this paper, we propose to exploit semantic attributes for image search reranking. Based on the classifiers for all the predefined attributes, each image is represented by an attribute feature consisting of the responses from these classifiers. A hypergraph is then used to model the relationship between images by integrating low-level visual features and attribute features. Hypergraph ranking is then performed to order the images. Its basic principle is that visually similar images should have similar ranking scores. In this paper, we propose a visual-attribute joint hypergraph learning approach to simultaneously explore two information sources. A hypergraph is constructed to model the relationship of all images. We conduct experiments on more than 1,000 queries in MSRA-MMV2.0 data set. The experimental results demonstrate the effectiveness of our approach.
机译:图像搜索重新排序是一种改进基于文本的图像搜索结果的有效方法。现有的大多数重新排序方法都是基于低级视觉功能。在本文中,我们建议利用语义属性进行图像搜索排名。基于所有预定义属性的分类器,每个图像都由一个属性特征表示,该特征由这些分类器的响应组成。然后,将超图用于通过集成低级视觉特征和属性特征来建模图像之间的关系。然后执行超图排名以对图像进行排序。它的基本原理是,视觉上相似的图像应具有相似的排名分数。在本文中,我们提出了一种视觉属性联合超图学习方法,以同时探索两个信息源。构造超图以对所有图像的关系建模。我们对MSRA-MMV2.0数据集中的1,000多个查询进行了实验。实验结果证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号