首页> 外文期刊>Image Processing, IEEE Transactions on >Multimodal Graph-Based Reranking for Web Image Search
【24h】

Multimodal Graph-Based Reranking for Web Image Search

机译:基于多峰图的Web图像检索排名

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a web image search reranking approach that explores multiple modalities in a graph-based learning scheme. Different from the conventional methods that usually adopt a single modality or integrate multiple modalities into a long feature vector, our approach can effectively integrate the learning of relevance scores, weights of modalities, and the distance metric and its scaling for each modality into a unified scheme. In this way, the effects of different modalities can be adaptively modulated and better reranking performance can be achieved. We conduct experiments on a large dataset that contains more than 1000 queries and 1 million images to evaluate our approach. Experimental results demonstrate that the proposed reranking approach is more robust than using each individual modality, and it also performs better than many existing methods.
机译:本文介绍了一种网络图像搜索排名方法,该方法探索了基于图的学​​习方案中的多种模式。与通常采用单个模态或将多个模态集成到一个长特征向量的常规方法不同,我们的方法可以有效地将相关性得分,模态权重,距离度量及其每种模态的缩放比例的学习整合到一个统一的方案中。以此方式,可以自适应地调制不同模态的效果,并且可以实现更好的重排性能。我们对包含1000多个查询和100万张图像的大型数据集进行了实验,以评估我们的方法。实验结果表明,所提出的重排序方法比使用每种单独的方法更健壮,并且比许多现有方法还具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号