首页> 外文期刊>Image Processing, IEEE Transactions on >Improving Web Image Search by Bag-Based Reranking
【24h】

Improving Web Image Search by Bag-Based Reranking

机译:通过基于袋的重新排序改善Web图像搜索

获取原文
获取原文并翻译 | 示例

摘要

Given a textual query in traditional text-based image retrieval (TBIR), relevant images are to be reranked using visual features after the initial text-based search. In this paper, we propose a new bag-based reranking framework for large-scale TBIR. Specifically, we first cluster relevant images using both textual and visual features. By treating each cluster as a “bag” and the images in the bag as “instances,” we formulate this problem as a multi-instance (MI) learning problem. MI learning methods such as mi-SVM can be readily incorporated into our bag-based reranking framework. Observing that at least a certain portion of a positive bag is of positive instances while a negative bag might also contain positive instances, we further use a more suitable generalized MI (GMI) setting for this application. To address the ambiguities on the instance labels in the positive and negative bags under this GMI setting, we develop a new method referred to as GMI-SVM to enhance retrieval performance by propagating the labels from the bag level to the instance level. To acquire bag annotations for (G)MI learning, we propose a bag ranking method to rank all the bags according to the defined bag ranking score. The top ranked bags are used as pseudopositive training bags, while pseudonegative training bags can be obtained by randomly sampling a few irrelevant images that are not associated with the textual query. Comprehensive experiments on the challenging real-world data set NUS-WIDE demonstrate our framework with automatic bag annotation can achieve the best performances compared with existing image reranking methods. Our experiments also demonstrate that GMI-SVM can achieve better performances when using the manually labeled training bags obtained from relevance feedback.
机译:在传统的基于文本的图像检索(TBIR)中给定文本查询的情况下,在初始的基于文本的搜索之后,将使用视觉功能对相关图像进行排名。在本文中,我们提出了一个针对大型TBIR的新的基于袋的重新排序框架。具体来说,我们首先使用文字和视觉功能对相关图像进行聚类。通过将每个群集视为“包”,并将包中的图像视为“实例”,我们将此问题表述为多实例(MI)学习问题。诸如mi-SVM之类的MI学习方法可以轻松地纳入我们基于包的重排框架中。观察到肯定袋的至少一部分是阳性实例,而阴性袋也可能包含阳性实例,因此我们针对此应用进一步使用了更合适的广义MI(GMI)设置。为了解决在此GMI设置下正袋和负袋中实例标签上的歧义,我们开发了一种称为GMI-SVM的新方法,以通过将标签从袋子级别传播到实例级别来增强检索性能。为了获得用于(G)MI学习的行李注释,我们提出了一种行李排名方法,根据定义的行李排名得分对所有行李进行排名。排名最高的袋用作伪阳性训练袋,而伪阴性训练袋可以通过随机采样一些与文本查询无关的无关图像来获得。在具有挑战性的真实世界数据集NUS-WIDE上进行的全面实验表明,与现有的图像重新排名方法相比,带有自动袋注释的框架可以实现最佳性能。我们的实验还证明,当使用从相关性反馈获得的手动标记的训练包时,GMI-SVM可以实现更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号