首页> 外文期刊>Image Processing, IEEE Transactions on >Fast Sparse Image Reconstruction Using Adaptive Nonlinear Filtering
【24h】

Fast Sparse Image Reconstruction Using Adaptive Nonlinear Filtering

机译:使用自适应非线性滤波的快速稀疏图像重建

获取原文
获取原文并翻译 | 示例

摘要

Compressed sensing is a new paradigm for signal recovery and sampling. It states that a relatively small number of linear measurements of a sparse signal can contain most of its salient information and that the signal can be exactly reconstructed from these highly incomplete observations. The major challenge in practical applications of compressed sensing consists in providing efficient, stable and fast recovery algorithms which, in a few seconds, evaluate a good approximation of a compressible image from highly incomplete and noisy samples. In this paper, we propose to approach the compressed sensing image recovery problem using adaptive nonlinear filtering strategies in an iterative framework, and we prove the convergence of the resulting two-steps iterative scheme. The results of several numerical experiments confirm that the corresponding algorithm possesses the required properties of efficiency, stability and low computational cost and that its performance is competitive with those of the state of the art algorithms.
机译:压缩感测是信号恢复和采样的新范例。它指出,稀疏信号的相对少量的线性测量可以包含其大部分显着信息,并且可以从这些高度不完整的观测值中准确地重建信号。压缩感测的实际应用中的主要挑战在于提供有效,稳定和快速的恢复算法,该算法可在几秒钟内评估来自高度不完整和嘈杂样本的可压缩图像的良好近似性。在本文中,我们提出了在迭代框架中使用自适应非线性滤波策略来解决压缩感知图像恢复问题的方法,并证明了由此产生的两步迭代方案的收敛性。若干数值实验的结果证实,相应的算法具有所需的效率,稳定性和低计算量的性能,并且其性能与现有算法的性能相比具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号