首页> 外文期刊>IEEE Transactions on Image Processing >Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: adaptive algorithms
【24h】

Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: adaptive algorithms

机译:使用自适应稀疏重构和迭代去噪的基于非线性逼近的图像恢复-第二部分:自适应算法

获取原文
获取原文并翻译 | 示例

摘要

We combine the main ideas introduced in Part I with adaptive techniques to arrive at a powerful algorithm that estimates missing data in nonstationary signals. The proposed approach operates automatically based on a chosen linear transform that is expected to provide sparse decompositions over missing regions such that a portion of the transform coefficients over missing regions are zero or close to zero. Unlike prevalent algorithms, our method does not necessitate any complex preconditioning, segmentation, or edge detection steps, and it can be written as a progression of denoising operations. We show that constructing estimates based on nonlinear approximants is fundamentally a nonconvex problem and we propose a progressive algorithm that is designed to deal with this issue directly. The algorithm is applied to images through an extensive set of simulation examples, primarily on missing regions containing textures, edges, and other image features that are not readily handled by established estimation and recovery methods. We discuss the properties required of good transforms, and in conjunction, show the types of regions over which well-known transforms provide good predictors. We further discuss extensions of the algorithm where the utilized transforms are also chosen adaptively, where unpredictable signal components in the progressions are identified and not predicted, and where the prediction scenario is more general.
机译:我们将第一部分介绍的主要思想与自适应技术结合起来,得出了一种强大的算法,可以估算非平稳信号中的缺失数据。所提出的方法基于所选的线性变换而自动运行,该线性变换预期将在缺失区域上提供稀疏分解,使得缺失区域上的变换系数的一部分为零或接近零。与流行算法不同,我们的方法不需要任何复杂的预处理,分割或边缘检测步骤,并且可以将其写为降噪操作的过程。我们表明,基于非线性近似值构造估计量从根本上来说是一个非凸问题,并且我们提出了一种旨在直接解决该问题的渐进算法。该算法通过一系列广泛的模拟示例应用于图像,主要用于缺少纹理,边缘和其他图像特征的缺失区域,而这些区域很难通过既定的估计和恢复方法处理。我们讨论了良好变换所需的属性,并共同显示了众所周知的变换可提供良好预测变量的区域类型。我们进一步讨论了算法的扩展,其中还自适应地选择了所使用的变换,识别了进程中不可预测的信号分量并且不对其进行预测,并且预测情况更为笼统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号