首页> 外文期刊>IEEE Transactions on Image Processing >Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory
【24h】

Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory

机译:使用自适应稀疏重构和迭代去噪的基于非线性逼近的图像恢复-第一部分:理论

获取原文
获取原文并翻译 | 示例

摘要

We study the robust estimation of missing regions in images and video using adaptive, sparse reconstructions. Our primary application is on missing regions of pixels containing textures, edges, and other image features that are not readily handled by prevalent estimation and recovery algorithms. We assume that we are given a linear transform that is expected to provide sparse decompositions over missing regions such that a portion of the transform coefficients over missing regions are zero or close to zero. We adaptively determine these small magnitude coefficients through thresholding, establish sparsity constraints, and estimate missing regions in images using information surrounding these regions. Unlike prevalent algorithms, our approach does not necessitate any complex preconditioning, segmentation, or edge detection steps, and it can be written as a sequence of denoising operations. We show that the region types we can effectively estimate in a mean-squared error sense are those for which the given transform provides a close approximation using sparse nonlinear approximants. We show the nature of the constructed estimators and how these estimators relate to the utilized transform and its sparsity over regions of interest. The developed estimation framework is general, and can readily be applied to other nonstationary signals with a suitable choice of linear transforms. Part I discusses fundamental issues, and Part II is devoted to adaptive algorithms with extensive simulation examples that demonstrate the power of the proposed techniques.
机译:我们使用自适应,稀疏重建研究图像和视频中缺失区域的鲁棒估计。我们的主要应用是在缺少纹理,边缘和其他图像特征的像素缺失区域上,而这些区域通常无法通过流行的估计和恢复算法处理。我们假设给定了线性变换,该线性变换有望在缺失区域上提供稀疏分解,以使缺失区域上的一部分变换系数为零或接近零。我们通过阈值自适应地确定这些小幅度系数,建立稀疏约束,并使用围绕这些区域的信息来估计图像中的缺失区域。与流行算法不同,我们的方法不需要任何复杂的预处理,分割或边缘检测步骤,并且可以将其编写为一系列去噪操作。我们表明,在均方误差意义上可以有效估计的区域类型是那些使用稀疏非线性近似值提供给定变换提供近似值的区域类型。我们展示了构造的估计量的性质以及这些估计量与所利用的变换及其在感兴趣区域上的稀疏度之间的关系。所开发的估计框架是通用的,并且可以通过适当选择的线性变换轻松地应用于其他非平稳信号。第一部分讨论了基本问题,第二部分专门介绍了自适应算法,并通过大量的仿真示例演示了所提出技术的强大功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号