首页> 外文期刊>Image Processing, IEEE Transactions on >Cross-Camera Knowledge Transfer for Multiview People Counting
【24h】

Cross-Camera Knowledge Transfer for Multiview People Counting

机译:跨摄像机知识转移以实现多视图人数统计

获取原文
获取原文并翻译 | 示例

摘要

We present a novel two-pass framework for counting the number of people in an environment, where multiple cameras provide different views of the subjects. By exploiting the complementary information captured by the cameras, we can transfer knowledge between the cameras to address the difficulties of people counting and improve the performance. The contribution of this paper is threefold. First, normalizing the perspective of visual features and estimating the size of a crowd are highly correlated tasks. Hence, we treat them as a joint learning problem. The derived counting model is scalable and it provides more accurate results than existing approaches. Second, we introduce an algorithm that matches groups of pedestrians in images captured by different cameras. The results provide a common domain for knowledge transfer, so we can work with multiple cameras without worrying about their differences. Third, the proposed counting system is comprised of a pair of collaborative regressors. The first one determines the people count based on features extracted from intracamera visual information, whereas the second calculates the residual by considering the conflicts between intercamera predictions. The two regressors are elegantly coupled and provide an accurate people counting system. The results of experiments in various settings show that, overall, our approach outperforms comparable baseline methods. The significant performance improvement demonstrates the effectiveness of our two-pass regression framework.
机译:我们提出了一种新颖的两遍框架,用于计算环境中的人数,在该环境中,多个摄像机提供了不同的拍摄对象视角。通过利用摄像机捕获的补充信息,我们可以在摄像机之间传递知识,以解决人数统计上的困难并提高性能。本文的贡献是三方面的。首先,标准化视觉特征的视角并估计人群的大小是高度相关的任务。因此,我们将它们视为共同学习的问题。派生的计数模型是可伸缩的,并且比现有方法提供更准确的结果。其次,我们引入了一种算法,该算法可以匹配由不同摄像机捕获的图像中的行人组。结果为知识转移提供了一个公共领域,因此我们可以使用多台摄像机,而不必担心它们之间的差异。第三,建议的计数系统由一对协作回归器组成。第一个基于从摄像机内视觉信息中提取的特征来确定人数,而第二个则通过考虑摄像机间预测之间的冲突来计算残差。两个回归器完美地结合在一起,并提供了准确的人员计数系统。在各种情况下的实验结果表明,总体而言,我们的方法优于可比的基线方法。显着的性能改进证明了我们的两遍回归框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号