首页> 外文期刊>IEEE Transactions on Image Processing >High-Resolution Image Classification Integrating Spectral-Spatial-Location Cues by Conditional Random Fields
【24h】

High-Resolution Image Classification Integrating Spectral-Spatial-Location Cues by Conditional Random Fields

机译:通过条件随机场整合光谱空间位置提示的高分辨率图像分类

获取原文
获取原文并翻译 | 示例

摘要

With the increase in the availability of high-resolution remote sensing imagery, classification is becoming an increasingly useful technique for providing a large area of detailed land-cover information by the use of these high-resolution images. High-resolution images have the characteristics of abundant geometric and detail information, which are beneficial to detailed classification. In order to make full use of these characteristics, a classification algorithm based on conditional random fields (CRFs) is presented in this paper. The proposed algorithm integrates spectral, spatial contextual, and spatial location cues by modeling the probabilistic potentials. The spectral cues modeled by the unary potentials can provide basic information for discriminating the various land-cover classes. The pairwise potentials consider the spatial contextual information by establishing the neighboring interactions between pixels to favor spatial smoothing. The spatial location cues are explicitly encoded in the higher order potentials. The higher order potentials consider the nonlocal range of the spatial location interactions between the target pixel and its nearest training samples. This can provide useful information for the classes that are easily confused with other land-cover types in the spectral appearance. The proposed algorithm integrates spectral, spatial contextual, and spatial location cues within a CRF framework to provide complementary information from varying perspectives, so that it can address the common problem of spectral variability in remote sensing images, which is directly reflected in the accuracy of each class and the average accuracy. The experimental results with three high-resolution images show the validity of the algorithm, compared with the other state-of-the-art classification algorithms.
机译:随着高分辨率遥感影像的可用性增加,分类正成为一种越来越有用的技术,通过使用这些高分辨率图像来提供大面积的详细土地覆盖信息。高分辨率图像具有丰富的几何信息和细节信息的特征,有利于细节分类。为了充分利用这些特性,提出了一种基于条件随机场(CRF)的分类算法。所提出的算法通过对概率潜力进行建模来集成频谱,空间上下文和空间位置线索。一元势建模的光谱线索可以为区分各种土地覆盖类别提供基本信息。成对电位通过建立像素之间的相邻交互关系以促进空间平滑来考虑空间上下文信息。空间位置提示以更高阶的电位显式编码。高阶电势考虑了目标像素与其最近的训练样本之间空间位置相互作用的非局部范围。这可以为在光谱外观上容易与其他土地覆盖类型混淆的类别提供有用的信息。所提出的算法在CRF框架内集成了光谱,空间上下文和空间位置线索,以从不同的角度提供补充信息,从而可以解决遥感图像中光谱可变性的常见问题,这直接反映在每个图像的准确性中等级和平均准确度。与其他最新分类算法相比,使用三张高分辨率图像进行的实验结果证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号