首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >High-Resolution SAR Image Classification Using Context-Aware Encoder Network and Hybrid Conditional Random Field Model
【24h】

High-Resolution SAR Image Classification Using Context-Aware Encoder Network and Hybrid Conditional Random Field Model

机译:高分辨率SAR图像分类使用上下文感知编码器网络和混合条件随机字段模型

获取原文
获取原文并翻译 | 示例

摘要

A pixel-wise classification for high-resolution (HR) synthetic aperture radar (SAR) images is a challenging task, due to the limited availability of labeled SAR data, as well as the difficulty of exploring context information affected by coherent speckle. In this article, we propose a novel supervised classification method for HR SAR images, which combines a context-aware encoder network (CAEN) and a hybrid conditional random field (HCRF) model. First, a new CAEN architecture is developed based on the intrinsic property of HR SAR pixel-wise labeling. The proposed architecture follows an encoder-decoder structure, wherein the residual context encoder (RCE) block and the global context-aware (GCA) block are proposed in the encoder module to capture local to global semantic contexts. The multiscale skip connections and feature compression structures are designed in the decoder module to preserve precise object structures while improving computational efficiency. Then, a patch sampling strategy is adopted to ensure that the training and test data are completely separated. It can achieve a less-biased estimate of the test error of CAEN. In addition, the overlapped sampling and data augmentation techniques are used to solve the problem of limited labeled data. Finally, the HCRF model is constructed and combined with the previous CAEN to further enhance the spatial label consistency. Our HCRF integrates pixel-level and region-level potentials into a unified Bayesian framework, making two spatial supports come to a more accurate decision on pixel categories. Experiments on four HR SAR images validate the superiority of the proposed method over other related algorithms.
机译:由于标记为SAR数据的可用性有限,并且由于标记的SAR数据的可用性有限,并且难以探索受相干斑点影响的上下文信息,这是一种具有挑战性的任务。在本文中,我们提出了一种用于HR SAR图像的新型监督分类方法,其结合了上下文感知编码器网络(CAEN)和混合条件随机字段(HCRF)模型。首先,基于HR SAR Pixel-Wise标记的内在属性开发了一种新的CAEN架构。所提出的架构遵循编码器解码器结构,其中在编码器模块中提出了残余上下文编码器(RCE)块和全局上下文感知(GCA)块,以捕获全局语义上下文。多尺度跳过连接和功能压缩结构设计在解码器模块中,以保持精确的物体结构,同时提高计算效率。然后,采用补丁采样策略来确保培训和测试数据完全分开。它可以达到较少偏向的CAEN测试误差估计。另外,重叠的采样和数据增强技术用于解决有限标记数据的问题。最后,HCRF模型构造并与先前的CAEN组合以进一步增强空间标签一致性。我们的HCRF将像素级别和区域级电位集成到一个统一的贝叶斯框架中,使两个空间支持在像素类别上更准确地决定。四个HR SAR图像上的实验验证了其他相关算法的提出方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号