首页> 外文期刊>IEEE Transactions on Image Processing >Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing
【24h】

Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing

机译:通过树结构集合和空间窗口扩展基于相关过滤器的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity ] based on a large ensemble of CFB trackers. The ensemble [of size ] is organized over a binary tree (depth ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.
机译:由于相关滤波器的建模能力和计算效率,它们已成功用于视觉跟踪。但是,基于现有技术的基于相关滤波器的(CFB)跟踪算法往往会迅速丢弃目标的先前姿态,因为它们在模型中仅考虑单个滤波器。相反,我们的方法是为以前的姿势注册多个CFB跟踪器,并在出现外观变化时利用注册的知识。为此,我们提出了一种基于CFB跟踪器大集合的新颖[复杂度]跟踪算法。 [size]的合奏组织在二叉树(深度)上,并学习目标外观子空间,以使每个组成跟踪器成为特定外观的专家。在跟踪过程中,所提出的算法仅结合外观感知相关专家来产生增强的跟踪决策。此外,我们提出了一种通用的空间窗口技术来增强各个专家跟踪器。为此,学习目标对象以及相关性过滤器的空间窗口,然后处理窗口区域以获得更鲁棒的相关性。在基准数据集的广泛实验中,通过使用建议的跟踪算法和空间窗口化,我们实现了显着的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号