首页> 外文期刊>IEEE Transactions on Image Processing >Grayscale-Thermal Tracking via Inverse Sparse Representation-Based Collaborative Encoding
【24h】

Grayscale-Thermal Tracking via Inverse Sparse Representation-Based Collaborative Encoding

机译:通过逆稀疏表示的协作编码灰度 - 热跟踪

获取原文
获取原文并翻译 | 示例

摘要

Grayscale-thermal tracking has attracted a great deal of attention due to its capability of fusing two different yet complementary target observations. Existing methods often consider extracting the discriminative target information and exploring the target correlation among different images as two separate issues, ignoring their interdependence. This may cause tracking drifts in challenging video pairs. This paper presents a collaborative encoding model called joint correlation and discriminant analysis based inver-sparse representation (JCDA-InvSR) to jointly encode the target candidates in the grayscale and thermal video sequences. In particular, we develop a multi-objective programming to integrate the feature selection and the multi-view correlation analysis into a unified optimization problem in JCDA-InvSR, which can simultaneously highlight the special characters of the grayscale and thermal targets through alternately optimizing two aspects: the target discrimination within a given image and the target correlation across different images. For robust grayscale-thermal tracking, we also incorporate the prior knowledge of target candidate codes into the SVM based target classifier to overcome the overfitting caused by limited training labels. Extensive experiments on GTOT and RGBT234 datasets illustrate the promising performance of our tracking framework.
机译:由于其融合了两种不同的互补目标观测,灰度热跟踪引起了大量的关注。现有方法通常考虑提取歧视性目标信息并探索不同图像之间的目标相关性,作为两个单独的问题,忽略它们的相互依赖性。这可能导致跟踪漂移在具有挑战性的视频对中。本文介绍了称为联合相关性的协作编码模型,基于判别分析的基于Inver-Sparse表示(JCDA-INVSR),共同编码灰度和热视频序列中的目标候选。特别是,我们开发了一个多目标程序,将特征选择和多视图相关分析集成到JCDA-Invsr中的统一优化问题中,这可以通过交替优化两个方面同时突出灰度和热目标的特殊字符:在给定图像内的目标判别和不同图像的目标相关性。对于强大的灰度 - 热跟踪,我们还将目标候选代码的先验知识包含在基于SVM的目标分类器中,以克服由有限训练标签引起的过度拟合。 GTOT和RGBT234数据集的广泛实验说明了我们跟踪框架的有希望的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号