首页> 外文期刊>IEEE Transactions on Image Processing >A Multi-Scale Spatial-Temporal Attention Model for Person Re-Identification in Videos
【24h】

A Multi-Scale Spatial-Temporal Attention Model for Person Re-Identification in Videos

机译:视频重新识别的多尺度空间暂时注意模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel deep neural network based attention model to learn the representative local regions from a video sequence for person re-identification. Specifically, we propose a multi-scale spatial-temporal attention (MSTA) model to measure the regions of each frame in different scales from the perspective of whole video sequence. Compared to traditional temporal attention models, MSTA focuses on exploiting the importance of local regions of each frame to the whole video representation in both spatial and temporal domains. A new training strategy is designed for the proposed model by incorporating the image-to-image mode with the video-to-video mode. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed model over state-of-the-art methods.
机译:在本文中,我们提出了一种基于新的神经网络的注意力模型,从视频序列中学习代表的本地区域,用于重新识别。具体地,我们提出了一种多尺度的空间 - 时间注意(MSTA)模型来测量从整个视频序列的角度来测量不同尺度的每个帧的区域。与传统的时间关注模型相比,MSTA专注于利用每个帧的本地区域对空间和时间域中的整个视频表示的重要性。通过将图像到图像模式结合到视频模式,为所提出的模型设计了一种新的培训策略。基准数据集的广泛实验证明了所提出的型号的最先进方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号