首页> 外文期刊>IEEE Transactions on Image Processing >Collective Reconstructive Embeddings for Cross-Modal Hashing
【24h】

Collective Reconstructive Embeddings for Cross-Modal Hashing

机译:用于跨莫达尔的集体重建嵌入物

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of cross-modal retrieval by hashing-based approximate nearest neighbor search techniques. Most existing cross-modal hashing works mainly address the issue of multi-modal integration complexity using the same mapping and similarity calculation for data from different media types. Nonetheless, this may cause information loss during the mapping process due to overlooking the specifics of each individual modality. In this paper, we propose a simple yet effective cross-modal hashing approach, termed collective reconstructive embeddings (CRE), which can simultaneously solve the heterogeneity and integration complexity of multi-modal data. To address the heterogeneity challenge, we propose to process heterogeneous types of data using different modality-specific models. Specifically, we model textual data with cosine similarity-based reconstructive embedding to alleviate the data sparsity to the greatest extent, while for image data, we utilize the Euclidean distance to characterize the relationships of the projected hash codes. Meanwhile, we unify the projections of text and image to the Hamming space into a common reconstructive embedding through rigid mathematical reformulation, which not only reduces the optimization complexity significantly but also facilitates the inter-modal similarity preservation among different modalities. We further incorporate the code balance and uncorrelation criteria into the problem and devise an efficient iterative algorithm for optimization. Comprehensive experiments on four widely used multimodal benchmarks show that the proposed CRE can achieve a superior performance compared with the state of the art on several challenging cross-modal tasks.
机译:在本文中,我们研究了基于哈希近似邻近邻的搜索技术的跨模态检索问题。大多数现有的跨模型散列工作主要使用来自不同媒体类型的数据的相同映射和相似性计算来解决多模态集成复杂性的问题。尽管如此,这可能导致映射过程中的信息丢失,因为忽略了每个单独的方式的细节。在本文中,我们提出了一种简单而有效的跨模型散列方法,称为集体重建嵌入式(CRE),其可以同时解决多模态数据的异质性和集成复杂性。为了解决异质性挑战,我们建议使用不同的模态特定模型处理异构类型的数据。具体而言,我们使用基于余弦相似性的重建嵌入来模拟文本数据,以在最大程度上缓解数据稀疏性,而对于图像数据,我们利用欧几里德距离来表征投影哈希代码的关系。同时,我们将文本和图像的预测统一到汉明空间中的一个共同的重建嵌入,通过刚性数学重构,这不仅显着降低了优化复杂性,而且还促进了不同模式之间的模态相似性保存。我们还将代码平衡和不相关标准纳入问题,并设计了一种高效的迭代算法进行优化。四种广泛使用的多模式基准测试的综合实验表明,拟议的CRE可以在几个具有挑战性的跨模型任务中实现了卓越的性能。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2019年第6期|2770-2784|共15页
  • 作者单位

    Univ Elect Sci & Technol China Ctr Future Media Chengdu 611731 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Ctr Future Media Chengdu 611731 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Ctr Future Media Chengdu 611731 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Ctr Future Media Chengdu 611731 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Sichuan Peoples R China;

    Hefei Univ Technol Sch Comp & Informat Hefei 230009 Anhui Peoples R China;

    Univ Elect Sci & Technol China Ctr Future Media Chengdu 611731 Sichuan Peoples R China|Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Sichuan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-modal hashing; reconstructive embeddings; cross-modal retrieval;

    机译:跨模态散列;重建嵌入式;跨模型检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号