首页> 外文期刊>IEEE Transactions on Image Processing >Collective Affinity Learning for Partial Cross-Modal Hashing
【24h】

Collective Affinity Learning for Partial Cross-Modal Hashing

机译:部分交叉模态散列的集体亲和力学习

获取原文
获取原文并翻译 | 示例

摘要

In the past decade, various unsupervised hashing methods have been developed for cross-modal retrieval. However, in real-world applications, it is often the incomplete case that every modality of data may suffer from some missing samples. Most existing works assume that every object appears in both modalities, hence they may not work well for partial multi-modal data. To address this problem, we propose a novel Collective Affinity Learning Method (CALM), which collectively and adaptively learns an anchor graph for generating binary codes on partial multi-modal data. In CALM, we first construct modality-specific bipartite graphs collectively, and derive a probabilistic model to figure out complete data-to-anchor affinities for each modality. Theoretical analysis reveals its ability to recover missing adjacency information. Moreover, a robust model is proposed to fuse these modality-specific affinities by adaptively learning a unified anchor graph. Then, the neighborhood information from the learned anchor graph acts as feedback, which guides the previous affinity reconstruction procedure. To solve the formulated optimization problem, we further develop an effective algorithm with linear time complexity and fast convergence. Last, Anchor Graph Hashing (AGH) is conducted on the fused affinities for cross-modal retrieval. Experimental results on benchmark datasets show that our proposed CALM consistently outperforms the existing methods.
机译:在过去的十年中,已经开发了各种无人监督的散列方法以进行跨模型检索。然而,在现实世界应用中,通常是数据的每个模式可能患有一些缺少的样本的不完整情况。大多数现有的作品假设每个对象都出现在两个模态中,因此它们可能无法适用于部分多模态数据。为了解决这个问题,我们提出了一种新颖的集体亲和力学习方法(平静),其集体和自适应地学习用于在部分多模态数据上生成二进制代码的锚图。在平静中,我们首先统称地构建模态的二分和图形,并导出概率模型来弄清楚每个模态的完整数据到锚定分泌功能。理论分析显示其恢复缺失邻接信息的能力。此外,提出了一种稳健的模型来通过自适应地学习统一的锚图来融合这些模态特异性的亲缘性。然后,来自学习锚图的邻域信息用作反馈,其引导先前的亲和重建过程。为了解决配方的优化问题,我们进一步开发了一种具有线性时间复杂度和快速收敛性的有效算法。最后,对融合性亲和力进行锚曲线散列(AGH)以进行跨模型检索。基准数据集的实验结果表明,我们建议的平静一致优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号