首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data
【24h】

Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data

机译:用LASUR和LANDSAT数据制作MODIS LAI和FPAR算法的原型

获取原文
获取原文并翻译 | 示例

摘要

This paper describes results from prototyping of the moderate resolution imaging spectroradiometer (MODIS) radiative transfer-based synergistic algorithm for the estimation of global leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation using land surface reflectances (LASUR) and Landsat data. The algorithm uses multispectral surface reflectances and a land cover classification map as input data to retrieve global LAI and FPAR fields. The authors' objectives are to evaluate its performance as a function of spatial resolution and uncertainties in surface reflectances and the land cover map. They analyzed reasons the algorithm can or cannot retrieve a value of LAI/FPAR from the reflectance data and justified the use of more complex algorithms, instead of NDVI-based methods. The algorithm was tested to investigate the effects of vegetation misclassification on LAI/FPAR retrievals. Misclassification between distinct biomes can fatally impact the quality of the retrieval, while the impact of misclassification between spectrally similar biomes is negligible. Comparisons of results from the coarse and fine resolution retrievals show that the algorithm is dependent on the spatial resolution of the data. By evaluating the data density distribution function, they can adjust the algorithm for data resolution and utilize the algorithm with data from other sensors.
机译:本文介绍了基于中分辨率成像光谱仪(MODIS)辐射转移的协同算法的原型结果,该算法可利用陆地表面反射率(LASUR)估算植被吸收的全球叶面积指数(LAI)和光合有效辐射(FPAR)的比例)和Landsat数据。该算法使用多光谱表面反射率和土地覆盖分类图作为输入数据来检索全局LAI和FPAR字段。作者的目的是根据空间分辨率以及表面反射率和土地覆盖图的不确定性来评估其性能。他们分析了该算法能否从反射率数据中检索LAI / FPAR值的原因,并证明了使用更复杂的算法代替基于NDVI的方法的合理性。测试了该算法,以调查植被分类错误对LAI / FPAR检索的影响。不同生物群落之间的错误分类会严重影响检索质量,而光谱相似生物群落之间的错误分类影响则可以忽略不计。粗略和精细分辨率检索结果的比较表明,该算法取决于数据的空间分辨率。通过评估数据密度分布函数,他们可以调整数据分辨率算法,并将该算法与来自其他传感器的数据一起使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号