首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
【24h】

Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data

机译:强大的多重估计器系统,可从遥感数据中分析生物物理参数

获取原文
获取原文并翻译 | 示例

摘要

An approach based on multiple estimator systems (MESs) for the estimation of biophysical parameters from remotely sensed data is proposed. The rationale behind the proposed approach is to exploit the peculiarities of an ensemble of different estimators in order to improve the robustness (and in some cases the accuracy) of the estimation process. The proposed MESs can be implemented in two conceptually different ways. One extends the use of an approach previously proposed in the regression literature to the estimation of biophysical parameters from remote sensing data. This approach integrates the estimates obtained from the different regression algorithms making up the ensemble by a direct linear combination (combination-based approach). The other consists of a novel approach that provides as output the estimate obtained by the regression algorithm (included in the ensemble) characterized by the highest expected accuracy in the region of the feature space associated with the considered pattern (selection-based approach). This estimator is identified based on a proper partition of the feature space. The effectiveness of the proposed approach has been assessed on the problem of estimating water quality parameters from multispectral remote sensing data. In particular, the presented MES-based approach has been evaluated by considering different operational conditions where the single estimators included in the ensemble are: 1) based on the same or on different regression methods; 2) characterized by different tradeoffs between correlated errors and accuracy of the estimates; 3) trained on samples affected or not by measurement errors. In the definition of the ensemble particular attention is devoted to support vector machines (SVMs), which are a promising approach to the solution of regression problems. In particular, a detailed experimental analysis on the effectiveness of SVMs for solving the considered estimation problem is presented. The experimental results point out that the SVM method is effective and that the proposed MES approach is capable of increasing both the robustness and accuracy of the estimation process.
机译:提出了一种基于多重估计系统(MES)的方法,用于从遥感数据中估计生物物理参数。提出的方法的基本原理是利用不同估计量的集合的特殊性,以提高估计过程的鲁棒性(在某些情况下还包括准确性)。可以以两种概念上不同的方式实施建议的MES。一种将先前在回归文献中提出的方法的使用扩展到根据遥感数据估算生物物理参数。此方法通过直接线性组合(基于组合的方法)集成了从组成集合的不同回归算法获得的估计值。另一种由新颖的方法组成,该方法提供由回归算法(包含在集合中)获得的估计值作为输出,该估计值的特征在于与考虑的模式相关联的特征空间区域中的最高预期准确性(基于选择的方法)。基于特征空间的适当划分来识别该估计器。在从多光谱遥感数据估算水质参数的问题上,评估了所提出方法的有效性。特别是,通过考虑不同的操作条件对所提出的基于MES的方法进行了评估,其中包括在集合中的单个估计量是:1)基于相同或不同的回归方法; 2)其特征是相关误差与估计准确性之间的权衡取舍; 3)对受测量误差影响或不受测量误差影响的样本进行培训。在集合的定义中,特别注意支持向量机(SVM),这是解决回归问题的有前途的方法。特别是,提出了关于支持向量机用于解决所考虑的估计问题的有效性的详细实验分析。实验结果表明,支持向量机方法是有效的,并且所提出的MES方法能够提高估计过程的鲁棒性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号