首页> 美国卫生研究院文献>other >Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
【2h】

Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters

机译:通过使用遥感蒸散量和生物物理参数进行空间显式校准可提高水文模型的可预测性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A hydrologic model, calibrated using only streamflow data, can produce acceptable streamflow simulation at the watershed outlet yet unrealistic representations of water balance across the landscape. Recent studies have demonstrated the potential of multi-objective calibration using remotely sensed evapotranspiration (ET) and gaged streamflow data to spatially improve the water balance. However, methodological clarity on how to “best” integrate ET data and model parameters in multi-objective model calibration to improve simulations is lacking. To address these limitations, we assessed how a spatially explicit, distributed calibration approach that uses (1) remotely sensed ET data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and (2) frequently overlooked biophysical parameters can improve the overall predictability of two key components of the water balance: streamflow and ET at different locations throughout the watershed. We used the Soil and Water Assessment Tool (SWAT), previously modified to represent hydrologic transport and filling-spilling of landscape depressions, in a large watershed of the Prairie Pothole Region, United States. We employed a novel stepwise series of calibration experiments to isolate the effects (on streamflow and simulated ET) of integrating biophysical parameters and spatially explicit remotely sensed ET data into model calibration. Results suggest that the inclusion of biophysical parameters involving vegetation dynamics and energy utilization mechanisms tend to increase model accuracy. Furthermore, we found that using a lumped, versus a spatially explicit, approach for integrating ET into model calibration produces a sub-optimal model state with no potential improvement in model performance across large spatial scales. However, when we utilized the same MODIS ET datasets but calibrated each sub-basin in the spatially explicit approach, water yield prediction uncertainty decreased, including a distinct improvement in the temporal and spatial accuracy of simulated ET and streamflow. This further resulted in a more realistic simulation of vegetation growth when compared to MODIS Leaf-Area Index data. These findings afford critical insights into the efficient integration of remotely sensed “big data” into hydrologic modeling and associated watershed management decisions. Our approach can be generalized and potentially replicated using other hydrologic models and remotely sensed data resources – and in different geophysical settings of the globe.
机译:仅使用水流数据进行校准的水文模型可以在流域出口处产生可接受的水流模拟,但却无法真实反映整个景观中的水平衡。最近的研究表明,利用遥感蒸散量(ET)和测量的流量数据在空间上改善水平衡的多目标校准的潜力。但是,缺乏在多目标模型校准中如何“最佳”整合ET数据和模型参数以改善仿真的方法学上的明确性。为了解决这些限制,我们评估了使用(1)中分辨率成像光谱仪(MODIS)的遥感ET数据和(2)经常被忽视的生物物理参数的空间明确的分布式校准方法如何改善两个关键组件的整体可预测性水量平衡:整个流域中不同位置的水流和ET。我们使用了土壤和水评估工具(SWAT),之前对其进行了修改,以表示美国大草原坑洼地大流域中景观洼地的水文运输和填充溢出。我们采用了一系列新颖的校准实验,以隔离将生物物理参数和空间明确的遥感ET数据整合到模型校准中的影响(对流量和模拟ET的影响)。结果表明,包括涉及植被动力学和能量利用机制的生物物理参数往往会增加模型的准确性。此外,我们发现使用集总(而不是空间显式)方法将ET集成到模型校准中会产生次优模型状态,而在大空间尺度上模型性能没有潜在的改善。但是,当我们使用相同的MODIS ET数据集,但在空间显式方法中对每个子流域进行了校准时,水产量预测的不确定性降低了,包括模拟ET和水流的时间和空间精度有了明显提高。与MODIS叶面积指数数据相比,这进一步导致了对植被生长的更真实的模拟。这些发现为将遥感“大数据”有效集成到水文模型和相关流域管理决策中提供了重要的见识。我们的方法可以推广,并有可能使用其他水文模型和遥感数据资源进行复制,并且可以在全球不同的地球物理环境中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号