首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >SAR image segmentation by stochastic complexity minimization with a nonparametric noise model
【24h】

SAR image segmentation by stochastic complexity minimization with a nonparametric noise model

机译:利用非参数噪声模型通过随机复杂度最小化进行SAR图像分割

获取原文
获取原文并翻译 | 示例

摘要

We analyze the generalization of a parametric segmentation technique adapted to Gamma-distributed synthetic aperture radar (SAR) images to nonparametric noise models. This approach is based on a polygonal grid which can have an arbitrary topology and whose number of regions and regularity of its boundaries are obtained by minimizing the stochastic complexity of a quantified version on Q levels of the image. It thus leads to a criterion without parameters to be tuned by the user and adapted to different noise models. We analyze the influence of the quantization scheme and of the optimization procedure on the quality of the partitioning. We then compare the performance of the proposed approach to the parametric one on synthetic images. Finally, we show results obtained on real images and compared with a standard segmentation algorithm of SAR images.
机译:我们分析了适用于伽玛分布的合成孔径雷达(SAR)图像到非参数噪声模型的参数分割技术的推广。该方法基于多边形网格,该多边形网格可具有任意拓扑,并且其区域数量和边界规则性是通过最小化量化版本在图像Q级上的随机复杂度而获得的。因此,这导致没有参数的标准要由用户调整并适应不同的噪声模型。我们分析了量化方案和优化程序对分区质量的影响。然后,我们在合成图像上比较所提出的方法与参数方法的性能。最后,我们显示了在真实图像上获得的结果,并与SAR图像的标准分割算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号